Florian Wolf, Mareike Eschweiler, Annette Rademacher, Philipp Zimmer
{"title":"多发性硬化症患者基于多模式敏捷性的运动训练:一个新的框架。","authors":"Florian Wolf, Mareike Eschweiler, Annette Rademacher, Philipp Zimmer","doi":"10.1177/15459683221131789","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Multimodal agility-based exercise training (MAT) has been described as a framework for fall prevention in the elderly but might also be a valuable concept for exercise training in persons with Multiple Sclerosis (pwMS).</p><p><strong>The problem: </strong>Current recommendations advise pwMS to perform a multitude of different exercise training activities, as each of these has its separate evidence. However, pwMS struggle even more than the general population to be physically active. Additionally, Multiple Sclerosis often leads to co-occurring mobility and cognitive dysfunctions, for which simultaneous, time-efficient, and engaging training approaches are still limited in clinical practice and healthcare.</p><p><strong>The solution: </strong>The MAT framework has been developed to integratively improve cardiovascular, neuromuscular, and cognitive function by combining aspects of perception and orientation, change of direction, as well as stop-and-go patterns (ie, agility), in a group-training format. For pwMS, the MAT framework is conceptualized to include 3 Components: standing balance, dynamic balance (including functional leg strength), and agility-based exercises. Within these Components sensory, cognitive, and cardiovascular challenges can be adapted to individual needs.</p><p><strong>Recommendations: </strong>We recommend investigating multimodal exercise interventions that go beyond easily standardized, unimodal types of exercise (eg, aerobic or resistance exercise), which could allow for time-efficient training, targeting multiple frequent symptoms of persons with mild disability at once. MAT should be compared to unimodal approaches, regarding sensor-based gait outcomes, fatigue-related outcomes, cognition, as well as neuroprotective, and (supportive) disease-modifying effects.</p>","PeriodicalId":56104,"journal":{"name":"Neurorehabilitation and Neural Repair","volume":"36 12","pages":"777-787"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multimodal Agility-Based Exercise Training for Persons With Multiple Sclerosis: A New Framework.\",\"authors\":\"Florian Wolf, Mareike Eschweiler, Annette Rademacher, Philipp Zimmer\",\"doi\":\"10.1177/15459683221131789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Multimodal agility-based exercise training (MAT) has been described as a framework for fall prevention in the elderly but might also be a valuable concept for exercise training in persons with Multiple Sclerosis (pwMS).</p><p><strong>The problem: </strong>Current recommendations advise pwMS to perform a multitude of different exercise training activities, as each of these has its separate evidence. However, pwMS struggle even more than the general population to be physically active. Additionally, Multiple Sclerosis often leads to co-occurring mobility and cognitive dysfunctions, for which simultaneous, time-efficient, and engaging training approaches are still limited in clinical practice and healthcare.</p><p><strong>The solution: </strong>The MAT framework has been developed to integratively improve cardiovascular, neuromuscular, and cognitive function by combining aspects of perception and orientation, change of direction, as well as stop-and-go patterns (ie, agility), in a group-training format. For pwMS, the MAT framework is conceptualized to include 3 Components: standing balance, dynamic balance (including functional leg strength), and agility-based exercises. Within these Components sensory, cognitive, and cardiovascular challenges can be adapted to individual needs.</p><p><strong>Recommendations: </strong>We recommend investigating multimodal exercise interventions that go beyond easily standardized, unimodal types of exercise (eg, aerobic or resistance exercise), which could allow for time-efficient training, targeting multiple frequent symptoms of persons with mild disability at once. MAT should be compared to unimodal approaches, regarding sensor-based gait outcomes, fatigue-related outcomes, cognition, as well as neuroprotective, and (supportive) disease-modifying effects.</p>\",\"PeriodicalId\":56104,\"journal\":{\"name\":\"Neurorehabilitation and Neural Repair\",\"volume\":\"36 12\",\"pages\":\"777-787\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurorehabilitation and Neural Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15459683221131789\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and Neural Repair","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15459683221131789","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Multimodal Agility-Based Exercise Training for Persons With Multiple Sclerosis: A New Framework.
Introduction: Multimodal agility-based exercise training (MAT) has been described as a framework for fall prevention in the elderly but might also be a valuable concept for exercise training in persons with Multiple Sclerosis (pwMS).
The problem: Current recommendations advise pwMS to perform a multitude of different exercise training activities, as each of these has its separate evidence. However, pwMS struggle even more than the general population to be physically active. Additionally, Multiple Sclerosis often leads to co-occurring mobility and cognitive dysfunctions, for which simultaneous, time-efficient, and engaging training approaches are still limited in clinical practice and healthcare.
The solution: The MAT framework has been developed to integratively improve cardiovascular, neuromuscular, and cognitive function by combining aspects of perception and orientation, change of direction, as well as stop-and-go patterns (ie, agility), in a group-training format. For pwMS, the MAT framework is conceptualized to include 3 Components: standing balance, dynamic balance (including functional leg strength), and agility-based exercises. Within these Components sensory, cognitive, and cardiovascular challenges can be adapted to individual needs.
Recommendations: We recommend investigating multimodal exercise interventions that go beyond easily standardized, unimodal types of exercise (eg, aerobic or resistance exercise), which could allow for time-efficient training, targeting multiple frequent symptoms of persons with mild disability at once. MAT should be compared to unimodal approaches, regarding sensor-based gait outcomes, fatigue-related outcomes, cognition, as well as neuroprotective, and (supportive) disease-modifying effects.
期刊介绍:
Neurorehabilitation & Neural Repair (NNR) offers innovative and reliable reports relevant to functional recovery from neural injury and long term neurologic care. The journal''s unique focus is evidence-based basic and clinical practice and research. NNR deals with the management and fundamental mechanisms of functional recovery from conditions such as stroke, multiple sclerosis, Alzheimer''s disease, brain and spinal cord injuries, and peripheral nerve injuries.