DynAIRx 项目协议:人工智能用于多病动态处方优化和护理整合。

Journal of multimorbidity and comorbidity Pub Date : 2022-12-15 eCollection Date: 2022-01-01 DOI:10.1177/26335565221145493
Lauren E Walker, Aseel S Abuzour, Danushka Bollegala, Andrew Clegg, Mark Gabbay, Alan Griffiths, Cecil Kullu, Gary Leeming, Frances S Mair, Simon Maskell, Samuel Relton, Roy A Ruddle, Eduard Shantsila, Matthew Sperrin, Tjeerd Van Staa, Alan Woodall, Iain Buchan
{"title":"DynAIRx 项目协议:人工智能用于多病动态处方优化和护理整合。","authors":"Lauren E Walker, Aseel S Abuzour, Danushka Bollegala, Andrew Clegg, Mark Gabbay, Alan Griffiths, Cecil Kullu, Gary Leeming, Frances S Mair, Simon Maskell, Samuel Relton, Roy A Ruddle, Eduard Shantsila, Matthew Sperrin, Tjeerd Van Staa, Alan Woodall, Iain Buchan","doi":"10.1177/26335565221145493","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review.</p><p><strong>Objective: </strong>To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems.</p><p><strong>Design: </strong>DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR.</p><p><strong>Discussion: </strong>By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients.</p>","PeriodicalId":73843,"journal":{"name":"Journal of multimorbidity and comorbidity","volume":"12 ","pages":"26335565221145493"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/pdf/","citationCount":"0","resultStr":"{\"title\":\"The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity.\",\"authors\":\"Lauren E Walker, Aseel S Abuzour, Danushka Bollegala, Andrew Clegg, Mark Gabbay, Alan Griffiths, Cecil Kullu, Gary Leeming, Frances S Mair, Simon Maskell, Samuel Relton, Roy A Ruddle, Eduard Shantsila, Matthew Sperrin, Tjeerd Van Staa, Alan Woodall, Iain Buchan\",\"doi\":\"10.1177/26335565221145493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review.</p><p><strong>Objective: </strong>To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems.</p><p><strong>Design: </strong>DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR.</p><p><strong>Discussion: </strong>By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients.</p>\",\"PeriodicalId\":73843,\"journal\":{\"name\":\"Journal of multimorbidity and comorbidity\",\"volume\":\"12 \",\"pages\":\"26335565221145493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of multimorbidity and comorbidity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26335565221145493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of multimorbidity and comorbidity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26335565221145493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:结构化用药审查(SMR)旨在帮助实施国家医疗服务体系长期计划,对患有多种长期疾病和使用多种药物的患者进行用药优化。由于医疗服务提供者之间的健康记录整合不佳,因此收集这些审查所需的信息具有挑战性,而且在如何确定最迫切需要审查的患者方面几乎没有指导:从分散的临床记录中提取有关健康和用药随时间变化的信息,应用可解释的人工智能(AI)方法预测不良后果的风险,并将这些信息叠加到护理记录上,为 SMR 提供信息。我们将在初级保健处方审计和反馈系统中试用这种方法,并共同设计未来的药品优化决策支持系统:设计:DynAIRx 将针对三个关键的多病群体中可能存在问题的多药治疗,这三个群体是:(a) 有精神和身体健康问题的人群;(b) 有四种或四种以上长期病症、服用十种或十种以上药物的人群;(c) 年老体弱的人群。结构化临床数据将取自综合护理记录(全科、医院和社会护理),覆盖 1100 万人口,并辅以非结构化临床文本的自然语言处理(NLP)。将对人工智能系统进行培训,以识别不良事件发生前的病情、用药、检查和临床接触模式,从而识别可能从SMR中获益最多的个人:通过在现有处方审计和反馈系统中实施和评估人工智能增强的护理记录可视化,我们将创建一个与最终用户和患者共同设计的药品优化学习系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity.

The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity.

The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity.

The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity.

Background: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review.

Objective: To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems.

Design: DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR.

Discussion: By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信