Jichun Tang, Xuan Li, Lili Zhao, Jiajun Hui, Ning Ding
{"title":"Circ_0006220通过miR-342-3p/GOT2轴促进NSCLC进展。","authors":"Jichun Tang, Xuan Li, Lili Zhao, Jiajun Hui, Ning Ding","doi":"10.5761/atcs.oa.22-00090","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dysregulated circular RNAs (circRNAs) have shown crucial modulatory functions in tumorigenesis, containing non-small cell lung cancer (NSCLC). The purpose of this study was to explore the biological functions and regulatory theory of circ_0006220 in NSCLC.</p><p><strong>Methods: </strong>Reverse transcription-quantitative polymerase chain reaction and Western blot assay were conducted to measure RNA and protein expression, respectively. A total of 73 cases of NSCLC tumor samples were collected for expression analysis, and A-549 and NCI-H1299 cell lines were used for functional experiments. Cell proliferation was assessed by cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry. Cell apoptosis, motility, and angiogenesis ability were analyzed by flow cytometry, transwell assays, and capillary-like network formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the target relationships.</p><p><strong>Results: </strong>Circ_0006220 was highly expressed in NSCLC tissues and cell lines. Circ_0006220 silencing inhibited the proliferation, migration, invasion, and angiogenesis but induced the apoptosis of NSCLC cells. Circ_0006220 acted as a microRNA-342-3p (miR-342-3p) sponge, and circ_0006220 knockdown-induced changes on the phenotypes of NSCLC cells were largely overturned by the knockdown of miR-342-3p. miR-342-3p interacted with the 3' untranslated region of glutamic-oxaloacetic transaminase 2 (GOT2), and GOT2 overexpression largely diminished miR-342-3p overexpression-mediated influences in NSCLC cells. Circ_0006220 could up-regulate GOT2 expression by sponging miR-342-3p.</p><p><strong>Conclusion: </strong>Circ_0006220 promoted the malignant behaviors of NSCLC cells through mediating the miR-342-3p/GOT2 regulation cascade.</p>","PeriodicalId":8037,"journal":{"name":"Annals of Thoracic and Cardiovascular Surgery","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/bd/atcs-29-011.PMC9939679.pdf","citationCount":"1","resultStr":"{\"title\":\"Circ_0006220 Contributes to NSCLC Progression through miR-342-3p/GOT2 Axis.\",\"authors\":\"Jichun Tang, Xuan Li, Lili Zhao, Jiajun Hui, Ning Ding\",\"doi\":\"10.5761/atcs.oa.22-00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Dysregulated circular RNAs (circRNAs) have shown crucial modulatory functions in tumorigenesis, containing non-small cell lung cancer (NSCLC). The purpose of this study was to explore the biological functions and regulatory theory of circ_0006220 in NSCLC.</p><p><strong>Methods: </strong>Reverse transcription-quantitative polymerase chain reaction and Western blot assay were conducted to measure RNA and protein expression, respectively. A total of 73 cases of NSCLC tumor samples were collected for expression analysis, and A-549 and NCI-H1299 cell lines were used for functional experiments. Cell proliferation was assessed by cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry. Cell apoptosis, motility, and angiogenesis ability were analyzed by flow cytometry, transwell assays, and capillary-like network formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the target relationships.</p><p><strong>Results: </strong>Circ_0006220 was highly expressed in NSCLC tissues and cell lines. Circ_0006220 silencing inhibited the proliferation, migration, invasion, and angiogenesis but induced the apoptosis of NSCLC cells. Circ_0006220 acted as a microRNA-342-3p (miR-342-3p) sponge, and circ_0006220 knockdown-induced changes on the phenotypes of NSCLC cells were largely overturned by the knockdown of miR-342-3p. miR-342-3p interacted with the 3' untranslated region of glutamic-oxaloacetic transaminase 2 (GOT2), and GOT2 overexpression largely diminished miR-342-3p overexpression-mediated influences in NSCLC cells. Circ_0006220 could up-regulate GOT2 expression by sponging miR-342-3p.</p><p><strong>Conclusion: </strong>Circ_0006220 promoted the malignant behaviors of NSCLC cells through mediating the miR-342-3p/GOT2 regulation cascade.</p>\",\"PeriodicalId\":8037,\"journal\":{\"name\":\"Annals of Thoracic and Cardiovascular Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/bd/atcs-29-011.PMC9939679.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Thoracic and Cardiovascular Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5761/atcs.oa.22-00090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Thoracic and Cardiovascular Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5761/atcs.oa.22-00090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Circ_0006220 Contributes to NSCLC Progression through miR-342-3p/GOT2 Axis.
Purpose: Dysregulated circular RNAs (circRNAs) have shown crucial modulatory functions in tumorigenesis, containing non-small cell lung cancer (NSCLC). The purpose of this study was to explore the biological functions and regulatory theory of circ_0006220 in NSCLC.
Methods: Reverse transcription-quantitative polymerase chain reaction and Western blot assay were conducted to measure RNA and protein expression, respectively. A total of 73 cases of NSCLC tumor samples were collected for expression analysis, and A-549 and NCI-H1299 cell lines were used for functional experiments. Cell proliferation was assessed by cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry. Cell apoptosis, motility, and angiogenesis ability were analyzed by flow cytometry, transwell assays, and capillary-like network formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the target relationships.
Results: Circ_0006220 was highly expressed in NSCLC tissues and cell lines. Circ_0006220 silencing inhibited the proliferation, migration, invasion, and angiogenesis but induced the apoptosis of NSCLC cells. Circ_0006220 acted as a microRNA-342-3p (miR-342-3p) sponge, and circ_0006220 knockdown-induced changes on the phenotypes of NSCLC cells were largely overturned by the knockdown of miR-342-3p. miR-342-3p interacted with the 3' untranslated region of glutamic-oxaloacetic transaminase 2 (GOT2), and GOT2 overexpression largely diminished miR-342-3p overexpression-mediated influences in NSCLC cells. Circ_0006220 could up-regulate GOT2 expression by sponging miR-342-3p.
Conclusion: Circ_0006220 promoted the malignant behaviors of NSCLC cells through mediating the miR-342-3p/GOT2 regulation cascade.