双度(n,1)四元多项式的因式分解。

IF 0.4 Q4 MATHEMATICS
Johanna Lercher, Daniel Scharler, Hans-Peter Schröcker, Johannes Siegele
{"title":"双度(n,1)四元多项式的因式分解。","authors":"Johanna Lercher, Daniel Scharler, Hans-Peter Schröcker, Johannes Siegele","doi":"10.1007/s13366-022-00629-z","DOIUrl":null,"url":null,"abstract":"<p><p>We consider polynomials of bi-degree (<i>n</i>, 1) over the skew field of quaternions where the indeterminates commute with each other and with all coefficients. Polynomials of this type do not generally admit factorizations. We recall a necessary and sufficient condition for existence of a factorization with univariate linear factors that has originally been stated by Skopenkov and Krasauskas. Such a factorization is, in general, non-unique by known factorization results for univariate quaternionic polynomials. We unveil existence of bivariate polynomials with non-unique factorizations that cannot be explained in this way and characterize them geometrically and algebraically. Existence of factorizations is related to the existence of special rulings of two different types (left/right) on the ruled surface parameterized by the bivariate polynomial in the projective space over the quaternions. Special non-uniqueness in above sense can be explained algebraically by commutation properties of factors in suitable factorizations. A necessary geometric condition for this to happen is degeneration to a point of at least one of the left/right rulings.</p>","PeriodicalId":44678,"journal":{"name":"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Factorization of quaternionic polynomials of bi-degree (n,1).\",\"authors\":\"Johanna Lercher, Daniel Scharler, Hans-Peter Schröcker, Johannes Siegele\",\"doi\":\"10.1007/s13366-022-00629-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider polynomials of bi-degree (<i>n</i>, 1) over the skew field of quaternions where the indeterminates commute with each other and with all coefficients. Polynomials of this type do not generally admit factorizations. We recall a necessary and sufficient condition for existence of a factorization with univariate linear factors that has originally been stated by Skopenkov and Krasauskas. Such a factorization is, in general, non-unique by known factorization results for univariate quaternionic polynomials. We unveil existence of bivariate polynomials with non-unique factorizations that cannot be explained in this way and characterize them geometrically and algebraically. Existence of factorizations is related to the existence of special rulings of two different types (left/right) on the ruled surface parameterized by the bivariate polynomial in the projective space over the quaternions. Special non-uniqueness in above sense can be explained algebraically by commutation properties of factors in suitable factorizations. A necessary geometric condition for this to happen is degeneration to a point of at least one of the left/right rulings.</p>\",\"PeriodicalId\":44678,\"journal\":{\"name\":\"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13366-022-00629-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13366-022-00629-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是四元数倾斜域上的双度(n,1)多项式,其中的不定项相互换算,且所有系数都换算。这种类型的多项式一般不允许因式分解。我们回顾斯科彭科夫(Skopenkov)和克拉索斯卡斯(Krasauskas)最初提出的单变量线性因数因式分解存在的必要条件和充分条件。根据已知的单变量四元多项式因式分解结果,这种因式分解一般是非唯一的。我们揭示了具有非唯一因式分解的二元多项式的存在性,这些因式分解无法用这种方法解释,并从几何和代数上描述了它们的特征。因式分解的存在与四元数的投影空间中以二元多项式为参数的被统治表面上存在两种不同类型(左/右)的特殊统治有关。上述意义上的特殊非唯一性可以用适当因式分解中因子的换向性质来解释。要做到这一点,一个必要的几何条件是退化到至少一个左/右规则的点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Factorization of quaternionic polynomials of bi-degree (n,1).

Factorization of quaternionic polynomials of bi-degree (n,1).

We consider polynomials of bi-degree (n, 1) over the skew field of quaternions where the indeterminates commute with each other and with all coefficients. Polynomials of this type do not generally admit factorizations. We recall a necessary and sufficient condition for existence of a factorization with univariate linear factors that has originally been stated by Skopenkov and Krasauskas. Such a factorization is, in general, non-unique by known factorization results for univariate quaternionic polynomials. We unveil existence of bivariate polynomials with non-unique factorizations that cannot be explained in this way and characterize them geometrically and algebraically. Existence of factorizations is related to the existence of special rulings of two different types (left/right) on the ruled surface parameterized by the bivariate polynomial in the projective space over the quaternions. Special non-uniqueness in above sense can be explained algebraically by commutation properties of factors in suitable factorizations. A necessary geometric condition for this to happen is degeneration to a point of at least one of the left/right rulings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
56
期刊介绍: The Journal "Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry" was founded in 1971 on the occasion of the 65th birthday of O.-H. Keller. It publishes research articles in the areas of algebra, geometry, algebraic geometry and related fields, preferably in English language. The back issues of the journal are available at the European Digital Mathematics Library (EuDML) at: https://eudml.org/journal/10170 (Vols. 1-33, 1971-1992) https://eudml.org/journal/10084 (Vols. 34-51, 1993-2010)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信