网络嵌入辅助疫苗怀疑性检测。

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Applied Network Science Pub Date : 2023-01-01 Epub Date: 2023-02-16 DOI:10.1007/s41109-023-00534-x
Ferenc Béres, Tamás Vilmos Michaletzky, Rita Csoma, András A Benczúr
{"title":"网络嵌入辅助疫苗怀疑性检测。","authors":"Ferenc Béres, Tamás Vilmos Michaletzky, Rita Csoma, András A Benczúr","doi":"10.1007/s41109-023-00534-x","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate automatic methods to assess COVID vaccination views in Twitter content. Vaccine skepticism has been a controversial topic of long history that has become more important than ever with the COVID-19 pandemic. Our main goal is to demonstrate the importance of network effects in detecting vaccination skeptic content. Towards this end, we collected and manually labeled vaccination-related Twitter content in the first half of 2021. Our experiments confirm that the network carries information that can be exploited to improve the accuracy of classifying attitudes towards vaccination over content classification as baseline. We evaluate a variety of network embedding algorithms, which we combine with text embedding to obtain classifiers for vaccination skeptic content. In our experiments, by using Walklets, we improve the AUC of the best classifier with no network information by. We publicly release our labels, Tweet IDs and source codes on GitHub.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Network embedding aided vaccine skepticism detection.\",\"authors\":\"Ferenc Béres, Tamás Vilmos Michaletzky, Rita Csoma, András A Benczúr\",\"doi\":\"10.1007/s41109-023-00534-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate automatic methods to assess COVID vaccination views in Twitter content. Vaccine skepticism has been a controversial topic of long history that has become more important than ever with the COVID-19 pandemic. Our main goal is to demonstrate the importance of network effects in detecting vaccination skeptic content. Towards this end, we collected and manually labeled vaccination-related Twitter content in the first half of 2021. Our experiments confirm that the network carries information that can be exploited to improve the accuracy of classifying attitudes towards vaccination over content classification as baseline. We evaluate a variety of network embedding algorithms, which we combine with text embedding to obtain classifiers for vaccination skeptic content. In our experiments, by using Walklets, we improve the AUC of the best classifier with no network information by. We publicly release our labels, Tweet IDs and source codes on GitHub.</p>\",\"PeriodicalId\":37010,\"journal\":{\"name\":\"Applied Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41109-023-00534-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-023-00534-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了自动评估 Twitter 内容中 COVID 疫苗接种观点的方法。疫苗怀疑论是一个历史悠久的争议性话题,随着 COVID-19 的流行,它变得比以往任何时候都更加重要。我们的主要目标是证明网络效应在检测疫苗接种怀疑论内容方面的重要性。为此,我们收集了 2021 年上半年与疫苗接种相关的 Twitter 内容,并对其进行了人工标注。我们的实验证实,与内容分类相比,网络携带的信息可用于提高疫苗接种态度分类的准确性。我们评估了各种网络嵌入算法,并将其与文本嵌入相结合,从而获得疫苗接种怀疑论内容的分类器。在我们的实验中,通过使用 Walklets,我们提高了无网络信息的最佳分类器的 AUC。我们在 GitHub 上公开发布我们的标签、Tweet ID 和源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Network embedding aided vaccine skepticism detection.

Network embedding aided vaccine skepticism detection.

Network embedding aided vaccine skepticism detection.

Network embedding aided vaccine skepticism detection.

We investigate automatic methods to assess COVID vaccination views in Twitter content. Vaccine skepticism has been a controversial topic of long history that has become more important than ever with the COVID-19 pandemic. Our main goal is to demonstrate the importance of network effects in detecting vaccination skeptic content. Towards this end, we collected and manually labeled vaccination-related Twitter content in the first half of 2021. Our experiments confirm that the network carries information that can be exploited to improve the accuracy of classifying attitudes towards vaccination over content classification as baseline. We evaluate a variety of network embedding algorithms, which we combine with text embedding to obtain classifiers for vaccination skeptic content. In our experiments, by using Walklets, we improve the AUC of the best classifier with no network information by. We publicly release our labels, Tweet IDs and source codes on GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信