基于全局交叉变异和帐篷映射的哈里斯鹰优化。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Lei Chen, Na Song, Yunpeng Ma
{"title":"基于全局交叉变异和帐篷映射的哈里斯鹰优化。","authors":"Lei Chen,&nbsp;Na Song,&nbsp;Yunpeng Ma","doi":"10.1007/s11227-022-04869-7","DOIUrl":null,"url":null,"abstract":"<p><p>Harris hawks optimization (HHO) is a new meta-heuristic algorithm that builds a model by imitating the predation process of Harris hawks. In order to solve the problems of poor convergence speed caused by uniform choice position update formula in the exploration stage of basic HHO and falling into local optimization caused by insufficient population richness in the later stage of the algorithm, a Harris hawks optimization based on global cross-variation and tent mapping (CRTHHO) is proposed in this paper. Firstly, the tent mapping is introduced in the exploration stage to optimize random parameter q to speed up the convergence in the early stage. Secondly, the crossover mutation operator is introduced to cross and mutate the global optimal position in each iteration process. The greedy strategy is used to select, which prevents the algorithm from falling into local optimal because of skipping the optimal solution and improves the convergence accuracy of the algorithm. In order to investigate the performance of CRTHHO, experiments are carried out on ten benchmark functions and the CEC2017 test set. Experimental results show that the CRTHHO algorithm performs better than the HHO algorithm and is competitive with five advanced meta-heuristic algorithms.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 5","pages":"5576-5614"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595096/pdf/","citationCount":"1","resultStr":"{\"title\":\"Harris hawks optimization based on global cross-variation and tent mapping.\",\"authors\":\"Lei Chen,&nbsp;Na Song,&nbsp;Yunpeng Ma\",\"doi\":\"10.1007/s11227-022-04869-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Harris hawks optimization (HHO) is a new meta-heuristic algorithm that builds a model by imitating the predation process of Harris hawks. In order to solve the problems of poor convergence speed caused by uniform choice position update formula in the exploration stage of basic HHO and falling into local optimization caused by insufficient population richness in the later stage of the algorithm, a Harris hawks optimization based on global cross-variation and tent mapping (CRTHHO) is proposed in this paper. Firstly, the tent mapping is introduced in the exploration stage to optimize random parameter q to speed up the convergence in the early stage. Secondly, the crossover mutation operator is introduced to cross and mutate the global optimal position in each iteration process. The greedy strategy is used to select, which prevents the algorithm from falling into local optimal because of skipping the optimal solution and improves the convergence accuracy of the algorithm. In order to investigate the performance of CRTHHO, experiments are carried out on ten benchmark functions and the CEC2017 test set. Experimental results show that the CRTHHO algorithm performs better than the HHO algorithm and is competitive with five advanced meta-heuristic algorithms.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"79 5\",\"pages\":\"5576-5614\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595096/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-022-04869-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-022-04869-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

哈里斯鹰优化算法(HHO)是一种模仿哈里斯鹰捕食过程建立模型的元启发式算法。为了解决基本HHO算法在探索阶段由于位置更新公式选择一致导致收敛速度较差,在算法后期由于种群丰富度不足而陷入局部优化的问题,本文提出了一种基于全局交叉变异与帐篷映射的Harris hawks优化算法(CRTHHO)。首先,在探索阶段引入帐篷映射,优化随机参数q,加快前期的收敛速度。其次,引入交叉变异算子,在每次迭代过程中对全局最优位置进行交叉变异;采用贪心策略进行选择,避免了算法因跳过最优解而陷入局部最优,提高了算法的收敛精度。为了考察CRTHHO的性能,在10个基准函数和CEC2017测试集上进行了实验。实验结果表明,CRTHHO算法的性能优于HHO算法,并可与5种先进的元启发式算法竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harris hawks optimization based on global cross-variation and tent mapping.

Harris hawks optimization based on global cross-variation and tent mapping.

Harris hawks optimization based on global cross-variation and tent mapping.

Harris hawks optimization based on global cross-variation and tent mapping.

Harris hawks optimization (HHO) is a new meta-heuristic algorithm that builds a model by imitating the predation process of Harris hawks. In order to solve the problems of poor convergence speed caused by uniform choice position update formula in the exploration stage of basic HHO and falling into local optimization caused by insufficient population richness in the later stage of the algorithm, a Harris hawks optimization based on global cross-variation and tent mapping (CRTHHO) is proposed in this paper. Firstly, the tent mapping is introduced in the exploration stage to optimize random parameter q to speed up the convergence in the early stage. Secondly, the crossover mutation operator is introduced to cross and mutate the global optimal position in each iteration process. The greedy strategy is used to select, which prevents the algorithm from falling into local optimal because of skipping the optimal solution and improves the convergence accuracy of the algorithm. In order to investigate the performance of CRTHHO, experiments are carried out on ten benchmark functions and the CEC2017 test set. Experimental results show that the CRTHHO algorithm performs better than the HHO algorithm and is competitive with five advanced meta-heuristic algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信