热休克蛋白27在COVID-19和非COVID-19急性呼吸窘迫综合征发病机制中的作用

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Cell Stress & Chaperones Pub Date : 2023-11-01 Epub Date: 2023-11-15 DOI:10.1007/s12192-023-01381-6
Michael H Chiu, Benjamin Gershkovich, Ian-Ling Yu, Edward R O'Brien, Jingti Deng, Braedon McDonald
{"title":"热休克蛋白27在COVID-19和非COVID-19急性呼吸窘迫综合征发病机制中的作用","authors":"Michael H Chiu, Benjamin Gershkovich, Ian-Ling Yu, Edward R O'Brien, Jingti Deng, Braedon McDonald","doi":"10.1007/s12192-023-01381-6","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"877-887"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome.\",\"authors\":\"Michael H Chiu, Benjamin Gershkovich, Ian-Ling Yu, Edward R O'Brien, Jingti Deng, Braedon McDonald\",\"doi\":\"10.1007/s12192-023-01381-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.</p>\",\"PeriodicalId\":9684,\"journal\":{\"name\":\"Cell Stress & Chaperones\",\"volume\":\" \",\"pages\":\"877-887\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress & Chaperones\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12192-023-01381-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12192-023-01381-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性呼吸窘迫综合征(ARDS)是重症监护病房低氧性呼吸衰竭的常见原因,因COVID-19大流行而急剧增加。在COVID-19和非COVID-19 ARDS中,肺损伤的发病机制涉及局部(肺)和全身炎症,导致气体交换受损,需要机械通气,死亡率高。热休克蛋白27 (HSP27)是一种在细胞应激时表达的伴侣蛋白,通过NF-κB通路调节全身性炎症。鉴于其作为炎症调节剂的重要作用,我们试图研究HSP27及其相关自身抗体在SARS-CoV-2和非covid病因引起的ARDS中的作用。在一项前瞻性观察性研究中,共有68名入住重症监护病房的ARDS患者需要机械通气,其中包括22名非COVID-19患者和46名COVID-19患者。在ICU入院第1天和第3天测量血浆HSP27水平、抗HSP27自身抗体(AAB)和细胞因子谱,并测量临床结果。入院第1天和第3天,COVID-19 ARDS患者血浆HSP27水平明显升高,HSP27:AAB比值明显升高。在COVID-19患者中,较高水平的循环HSP27和HSP27:AAB比值与更严重的全身炎症反应和不良临床结果相关,包括更严重的低氧性呼吸衰竭。这些研究结果表明,HSP27是导致COVID-19 ARDS全身性炎症失调和更差临床结果的疾病晚期发病机制的标志物,因此可能代表一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome.

Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome.

Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信