{"title":"能够从d -木糖中产生多糖的微生物。","authors":"Sosyu Tsutsui, Tomohiro Hatano, Ryo Funada, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2022_0008","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the importance of biomass utilization has increased, but it has not been effectively exploited. In particular, it is difficult to use hemicellulose, the second most abundant biopolymer of biomass. Therefore, in order to promote the utilization of hemicellulose, we screened for microorganisms capable of producing polysaccharides from D-xylose. The following four strains were selected from samples collected from various regions of Okinawa Prefecture: <i>Kosakonia</i> sp. (SO_001), <i>Papiliotrema terrestris</i> (SO_005), <i>Pseudarthrobacter</i> sp. (SO_006), and <i>Williamsia</i> sp. (SO_009). Observation with a scanning electron microscope (SEM) confirmed that each bacterium produced polysaccharides with different shapes. In addition, the molecular weight and sugar composition of the polysaccharides produced by each bacterium were distinct. The selected microorganisms include closely related species known to promote plant growth and known to suppress postharvest pathogens. Since these microorganisms may be used not only in known fields but also in new fields, the results of this research are expected to greatly expand the uses of hemicellulose.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bd/24/69_jag.JAG-2022_0008.PMC9720630.pdf","citationCount":"0","resultStr":"{\"title\":\"Microorganisms Capable of Producing Polysaccharides from D-Xylose.\",\"authors\":\"Sosyu Tsutsui, Tomohiro Hatano, Ryo Funada, Satoshi Kaneko\",\"doi\":\"10.5458/jag.jag.JAG-2022_0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the importance of biomass utilization has increased, but it has not been effectively exploited. In particular, it is difficult to use hemicellulose, the second most abundant biopolymer of biomass. Therefore, in order to promote the utilization of hemicellulose, we screened for microorganisms capable of producing polysaccharides from D-xylose. The following four strains were selected from samples collected from various regions of Okinawa Prefecture: <i>Kosakonia</i> sp. (SO_001), <i>Papiliotrema terrestris</i> (SO_005), <i>Pseudarthrobacter</i> sp. (SO_006), and <i>Williamsia</i> sp. (SO_009). Observation with a scanning electron microscope (SEM) confirmed that each bacterium produced polysaccharides with different shapes. In addition, the molecular weight and sugar composition of the polysaccharides produced by each bacterium were distinct. The selected microorganisms include closely related species known to promote plant growth and known to suppress postharvest pathogens. Since these microorganisms may be used not only in known fields but also in new fields, the results of this research are expected to greatly expand the uses of hemicellulose.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bd/24/69_jag.JAG-2022_0008.PMC9720630.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2022_0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2022_0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Microorganisms Capable of Producing Polysaccharides from D-Xylose.
In recent years, the importance of biomass utilization has increased, but it has not been effectively exploited. In particular, it is difficult to use hemicellulose, the second most abundant biopolymer of biomass. Therefore, in order to promote the utilization of hemicellulose, we screened for microorganisms capable of producing polysaccharides from D-xylose. The following four strains were selected from samples collected from various regions of Okinawa Prefecture: Kosakonia sp. (SO_001), Papiliotrema terrestris (SO_005), Pseudarthrobacter sp. (SO_006), and Williamsia sp. (SO_009). Observation with a scanning electron microscope (SEM) confirmed that each bacterium produced polysaccharides with different shapes. In addition, the molecular weight and sugar composition of the polysaccharides produced by each bacterium were distinct. The selected microorganisms include closely related species known to promote plant growth and known to suppress postharvest pathogens. Since these microorganisms may be used not only in known fields but also in new fields, the results of this research are expected to greatly expand the uses of hemicellulose.