类器官培养研究进展。

IF 1.2 Q4 GENETICS & HEREDITY
Zhiyuan Xie, Linghao Wang, Yan Zhang
{"title":"类器官培养研究进展。","authors":"Zhiyuan Xie,&nbsp;Linghao Wang,&nbsp;Yan Zhang","doi":"10.1055/s-0042-1756662","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.</p>","PeriodicalId":40142,"journal":{"name":"Global Medical Genetics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Organoid Culture Research.\",\"authors\":\"Zhiyuan Xie,&nbsp;Linghao Wang,&nbsp;Yan Zhang\",\"doi\":\"10.1055/s-0042-1756662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.</p>\",\"PeriodicalId\":40142,\"journal\":{\"name\":\"Global Medical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Medical Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1756662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Medical Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1756662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

类器官是促进个体疾病研究和个性化治疗的强大系统,因为它们模仿器官的结构和功能特征。然而,类器官在研究中的全部潜力尚未实现,临床应用受到限制。其中一个原因是类器官在小鼠来源的细胞外基质水凝胶中最有效地生长,其定义不清,批次间可变性和免疫原性。另一个原因是类器官缺乏宿主条件。作为肿瘤微环境的组成部分,微生物群和代谢物可以调节多种人类恶性肿瘤的发展和治疗。在此,我们介绍了几种工程基质材料,并对类器官与微生物群及其代谢物共培养的最新进展进行了综述。最后,我们讨论了构建更复杂的共文化的当前趋势和未来可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Organoid Culture Research.

Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Medical Genetics
Global Medical Genetics GENETICS & HEREDITY-
自引率
11.80%
发文量
30
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信