{"title":"非酒精性脂肪性肝病与肝脏分泌组","authors":"Muhammad Sohaib Khan, Choongho Lee, Sang Geon Kim","doi":"10.1007/s12272-022-01419-w","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolism of carbohydrates and lipids and protein degradation occurs in the liver and contributes to the body's homeostasis by secreting a variety of mediators. Any imbalance in this homeostasis due to excess fat consumption and the pathologic events accompanying lipotoxicity, autophagy dysregulation, endoplasmic reticulum stress, and insulin resistance may cause disturbances in the secretion of the proteins from the liver and their physiologic modifications and interactions with others. Since the liver secretome plays a role in the regulation of fuel metabolism and inflammation not only in the liver per se but also in other organs, the proteins belong to the utmost targets for treating metabolic and inflammatory diseases (e.g., COVID-19), depending on the available and feasible approaches to controlling their biological effects. However, in this era, we still come across new liver-derived proteins but are yet unable to entirely understand the pathologic basis underlying disease progression. This review aims to provide an updated overview of liver secretome biology with explanatory mechanisms with regard to the progression of metabolic and inflammatory liver diseases.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-022-01419-w.pdf","citationCount":"3","resultStr":"{\"title\":\"Non-alcoholic fatty liver disease and liver secretome\",\"authors\":\"Muhammad Sohaib Khan, Choongho Lee, Sang Geon Kim\",\"doi\":\"10.1007/s12272-022-01419-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolism of carbohydrates and lipids and protein degradation occurs in the liver and contributes to the body's homeostasis by secreting a variety of mediators. Any imbalance in this homeostasis due to excess fat consumption and the pathologic events accompanying lipotoxicity, autophagy dysregulation, endoplasmic reticulum stress, and insulin resistance may cause disturbances in the secretion of the proteins from the liver and their physiologic modifications and interactions with others. Since the liver secretome plays a role in the regulation of fuel metabolism and inflammation not only in the liver per se but also in other organs, the proteins belong to the utmost targets for treating metabolic and inflammatory diseases (e.g., COVID-19), depending on the available and feasible approaches to controlling their biological effects. However, in this era, we still come across new liver-derived proteins but are yet unable to entirely understand the pathologic basis underlying disease progression. This review aims to provide an updated overview of liver secretome biology with explanatory mechanisms with regard to the progression of metabolic and inflammatory liver diseases.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12272-022-01419-w.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-022-01419-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-022-01419-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Non-alcoholic fatty liver disease and liver secretome
Metabolism of carbohydrates and lipids and protein degradation occurs in the liver and contributes to the body's homeostasis by secreting a variety of mediators. Any imbalance in this homeostasis due to excess fat consumption and the pathologic events accompanying lipotoxicity, autophagy dysregulation, endoplasmic reticulum stress, and insulin resistance may cause disturbances in the secretion of the proteins from the liver and their physiologic modifications and interactions with others. Since the liver secretome plays a role in the regulation of fuel metabolism and inflammation not only in the liver per se but also in other organs, the proteins belong to the utmost targets for treating metabolic and inflammatory diseases (e.g., COVID-19), depending on the available and feasible approaches to controlling their biological effects. However, in this era, we still come across new liver-derived proteins but are yet unable to entirely understand the pathologic basis underlying disease progression. This review aims to provide an updated overview of liver secretome biology with explanatory mechanisms with regard to the progression of metabolic and inflammatory liver diseases.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.