了解COVID-19免疫病理学的竞赛:定量方法对理解宿主内相互作用的影响的观点

Sonia Gazeau , Xiaoyan Deng , Hsu Kiang Ooi , Fatima Mostefai , Julie Hussin , Jane Heffernan , Adrianne L. Jenner , Morgan Craig
{"title":"了解COVID-19免疫病理学的竞赛:定量方法对理解宿主内相互作用的影响的观点","authors":"Sonia Gazeau ,&nbsp;Xiaoyan Deng ,&nbsp;Hsu Kiang Ooi ,&nbsp;Fatima Mostefai ,&nbsp;Julie Hussin ,&nbsp;Jane Heffernan ,&nbsp;Adrianne L. Jenner ,&nbsp;Morgan Craig","doi":"10.1016/j.immuno.2023.100021","DOIUrl":null,"url":null,"abstract":"<div><p>The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"9 ","pages":"Article 100021"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826539/pdf/","citationCount":"1","resultStr":"{\"title\":\"The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions\",\"authors\":\"Sonia Gazeau ,&nbsp;Xiaoyan Deng ,&nbsp;Hsu Kiang Ooi ,&nbsp;Fatima Mostefai ,&nbsp;Julie Hussin ,&nbsp;Jane Heffernan ,&nbsp;Adrianne L. Jenner ,&nbsp;Morgan Craig\",\"doi\":\"10.1016/j.immuno.2023.100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.</p></div>\",\"PeriodicalId\":73343,\"journal\":{\"name\":\"Immunoinformatics (Amsterdam, Netherlands)\",\"volume\":\"9 \",\"pages\":\"Article 100021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826539/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunoinformatics (Amsterdam, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667119023000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119023000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2019冠状病毒病大流行表明,有必要将建模和数据分析更多地整合到公共卫生、实验和临床研究中。在大流行的头两年里,人们一直在努力提高我们对SARS-CoV-2病毒的宿主内免疫反应的理解,以更好地预测COVID-19的严重程度、治疗和疫苗开发问题,并深入了解病毒进化和变异对免疫病理学的影响。在这里,我们提供了关于在COVID-19大流行方法的前26个月使用定量方法(包括预测建模、群体遗传学、机器学习和降维技术)所取得的成就的观点,以及我们从这里开始改进我们对这次和未来大流行的反应的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions

The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions

The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信