{"title":"miR-1275通过PRDM16抑制人类大网膜脂肪干细胞向米色表型分化","authors":"Chenhong Lin, Xiaoying He, Xueying Chen, Liehua Liu, Hongyu Guan, Haipeng Xiao, Yanbing Li","doi":"10.1089/scd.2022.0176","DOIUrl":null,"url":null,"abstract":"<p><p>Beige adipocytes have recently attracted attention for their potential as new therapeutic targets in the management of obesity and related metabolic disorders. MicroRNAs (miRNAs) have been reported as transcriptional regulators or biomarkers of brown and beige adipogenesis. Nevertheless, the effects of miRNAs involved in beige differentiation of human visceral adipocytes remain to be investigated. In this study, microarray screening showed that miR-1275 was significantly decreased during the differentiation of beige adipocytes induced by human omental adipose-derived stem cells (hASCs). Overexpression of miR-1275 suppressed the \"brown-like\" differentiation of hASCs by inhibiting the key transcriptional factor PR domain containing 16 (<i>PRDM16</i>) without affecting the proliferation. Adipogenesis and mitochondrial biogenesis of beige adipocytes derived from hASCs were impaired by miR-1275 overexpression. The regulatory effect of miR-1275 was determined by direct binding to the 3'-untranslated region of <i>PRDM16</i>, which was demonstrated by a dual-luciferase assay. Taken together, this study identified miR-1275 as a negative regulator of beige cell development in hASCs by inhibiting <i>PRDM16</i>. Thus, miR-1275 might be a potential target in the management of visceral obesity and related metabolic diseases.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-1275 Inhibits Human Omental Adipose-Derived Stem Cells Differentiation Toward the Beige Phenotype via <i>PRDM16</i>.\",\"authors\":\"Chenhong Lin, Xiaoying He, Xueying Chen, Liehua Liu, Hongyu Guan, Haipeng Xiao, Yanbing Li\",\"doi\":\"10.1089/scd.2022.0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beige adipocytes have recently attracted attention for their potential as new therapeutic targets in the management of obesity and related metabolic disorders. MicroRNAs (miRNAs) have been reported as transcriptional regulators or biomarkers of brown and beige adipogenesis. Nevertheless, the effects of miRNAs involved in beige differentiation of human visceral adipocytes remain to be investigated. In this study, microarray screening showed that miR-1275 was significantly decreased during the differentiation of beige adipocytes induced by human omental adipose-derived stem cells (hASCs). Overexpression of miR-1275 suppressed the \\\"brown-like\\\" differentiation of hASCs by inhibiting the key transcriptional factor PR domain containing 16 (<i>PRDM16</i>) without affecting the proliferation. Adipogenesis and mitochondrial biogenesis of beige adipocytes derived from hASCs were impaired by miR-1275 overexpression. The regulatory effect of miR-1275 was determined by direct binding to the 3'-untranslated region of <i>PRDM16</i>, which was demonstrated by a dual-luciferase assay. Taken together, this study identified miR-1275 as a negative regulator of beige cell development in hASCs by inhibiting <i>PRDM16</i>. Thus, miR-1275 might be a potential target in the management of visceral obesity and related metabolic diseases.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0176\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
miR-1275 Inhibits Human Omental Adipose-Derived Stem Cells Differentiation Toward the Beige Phenotype via PRDM16.
Beige adipocytes have recently attracted attention for their potential as new therapeutic targets in the management of obesity and related metabolic disorders. MicroRNAs (miRNAs) have been reported as transcriptional regulators or biomarkers of brown and beige adipogenesis. Nevertheless, the effects of miRNAs involved in beige differentiation of human visceral adipocytes remain to be investigated. In this study, microarray screening showed that miR-1275 was significantly decreased during the differentiation of beige adipocytes induced by human omental adipose-derived stem cells (hASCs). Overexpression of miR-1275 suppressed the "brown-like" differentiation of hASCs by inhibiting the key transcriptional factor PR domain containing 16 (PRDM16) without affecting the proliferation. Adipogenesis and mitochondrial biogenesis of beige adipocytes derived from hASCs were impaired by miR-1275 overexpression. The regulatory effect of miR-1275 was determined by direct binding to the 3'-untranslated region of PRDM16, which was demonstrated by a dual-luciferase assay. Taken together, this study identified miR-1275 as a negative regulator of beige cell development in hASCs by inhibiting PRDM16. Thus, miR-1275 might be a potential target in the management of visceral obesity and related metabolic diseases.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development