{"title":"中国2020年火星探测任务中的火星探测车地下穿透雷达","authors":"Bin Zhou, ShaoXiang Shen, Wei Lu, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang","doi":"10.26464/epp2020054","DOIUrl":null,"url":null,"abstract":"<p>China's Mars probe, named Tianwen-1, including an orbiter and a landing rover, will be launched during the July-August 2020 Mars launch windows. Selected to be among the rover payloads is a Subsurface Penetrating Radar module (RoSPR). The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil. The RoSPR consists of two channels. The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters. The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters. This paper describes the design of the instrument and some results of field experiments.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.26464/epp2020054","citationCount":"34","resultStr":"{\"title\":\"The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission\",\"authors\":\"Bin Zhou, ShaoXiang Shen, Wei Lu, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang\",\"doi\":\"10.26464/epp2020054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>China's Mars probe, named Tianwen-1, including an orbiter and a landing rover, will be launched during the July-August 2020 Mars launch windows. Selected to be among the rover payloads is a Subsurface Penetrating Radar module (RoSPR). The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil. The RoSPR consists of two channels. The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters. The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters. This paper describes the design of the instrument and some results of field experiments.</p>\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.26464/epp2020054\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.26464/epp2020054\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2020054","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission
China's Mars probe, named Tianwen-1, including an orbiter and a landing rover, will be launched during the July-August 2020 Mars launch windows. Selected to be among the rover payloads is a Subsurface Penetrating Radar module (RoSPR). The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil. The RoSPR consists of two channels. The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters. The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters. This paper describes the design of the instrument and some results of field experiments.