Svetlana Serebrova, Daria Kurguzova, Lyudmila Krasnykh, Galina Vasilenko, Vladimir Drozdov, Natalia Lazareva, Eugenia Shikh, Marina Zhuravleva, Svetlana Rykova, Natalia Eremenko, Elena Kareva, Karin Mirzaev, Dmitriy Sychev, Alexey Prokofiev
{"title":"幽门螺杆菌对克拉霉素耐药的潜在因素。","authors":"Svetlana Serebrova, Daria Kurguzova, Lyudmila Krasnykh, Galina Vasilenko, Vladimir Drozdov, Natalia Lazareva, Eugenia Shikh, Marina Zhuravleva, Svetlana Rykova, Natalia Eremenko, Elena Kareva, Karin Mirzaev, Dmitriy Sychev, Alexey Prokofiev","doi":"10.1515/dmpt-2021-0193","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>A comparative dissolution kinetics test (CDKT) and bioequivalence studies of generic proton pump inhibitors (PPIs) do not model pharmacological acid suppression (PAS) and pathological duodenogastric reflux (PDGR). This study aimed to model them in CDKT to assess drugs stability and potential pantoprazole-clarithromycin interactions.</p><p><strong>Methods: </strong>In CDKT, PDGR (dissolution medium pH 7.00 ± 0.05, preexposure at pH 1.20 ± 0.05) and PAS (pH 4.00 ± 0.05) were modelled for original pantoprazole (OP) and its generics (GP1-4). In CDKT with high-performance liquid chromatography, dissolution gastric medium in adequate (pH 4.00 ± 0.05) and inadequate (pH 1.20 ± 0.05) PAS were modelled for original clarithromycin (OC) and its generics (GC1-4).</p><p><strong>Results: </strong>After exposure in pH 7.00 ± 0.05, pantoprazole was released from GP1 within 10 min in the amount of 68.8%. In рН 4.00 ± 0.05, 83.0% and 81.5% of pantoprazole were released from GP1 and GP4. When OP, GP2 and GP3 were placed in pH 7.00 ± 0.05, pantoprazole was released in amount: 99.4%, 88.0% and 98.2%. Clarithromycin releasing from OC, GC1, GC2, GC3, GC4 in pH 4.00 ± 0.05 was 93.5%, 91.6%, 92.9%, 79.4% and 83.0%. In pH 1.20 ± 0.05: 9.7%, 6.7%, 8.5%, 33.3%, 28.8%.</p><p><strong>Conclusions: </strong>Destruction of enteric coats of some local pantoprazole generics in CDKT-models might be a potential factor for inadequate therapy.</p>","PeriodicalId":11332,"journal":{"name":"Drug metabolism and personalized therapy","volume":"37 4","pages":"383-391"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Potential factors of <i>Helicobacter pylori</i> resistance to clarithromycin.\",\"authors\":\"Svetlana Serebrova, Daria Kurguzova, Lyudmila Krasnykh, Galina Vasilenko, Vladimir Drozdov, Natalia Lazareva, Eugenia Shikh, Marina Zhuravleva, Svetlana Rykova, Natalia Eremenko, Elena Kareva, Karin Mirzaev, Dmitriy Sychev, Alexey Prokofiev\",\"doi\":\"10.1515/dmpt-2021-0193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>A comparative dissolution kinetics test (CDKT) and bioequivalence studies of generic proton pump inhibitors (PPIs) do not model pharmacological acid suppression (PAS) and pathological duodenogastric reflux (PDGR). This study aimed to model them in CDKT to assess drugs stability and potential pantoprazole-clarithromycin interactions.</p><p><strong>Methods: </strong>In CDKT, PDGR (dissolution medium pH 7.00 ± 0.05, preexposure at pH 1.20 ± 0.05) and PAS (pH 4.00 ± 0.05) were modelled for original pantoprazole (OP) and its generics (GP1-4). In CDKT with high-performance liquid chromatography, dissolution gastric medium in adequate (pH 4.00 ± 0.05) and inadequate (pH 1.20 ± 0.05) PAS were modelled for original clarithromycin (OC) and its generics (GC1-4).</p><p><strong>Results: </strong>After exposure in pH 7.00 ± 0.05, pantoprazole was released from GP1 within 10 min in the amount of 68.8%. In рН 4.00 ± 0.05, 83.0% and 81.5% of pantoprazole were released from GP1 and GP4. When OP, GP2 and GP3 were placed in pH 7.00 ± 0.05, pantoprazole was released in amount: 99.4%, 88.0% and 98.2%. Clarithromycin releasing from OC, GC1, GC2, GC3, GC4 in pH 4.00 ± 0.05 was 93.5%, 91.6%, 92.9%, 79.4% and 83.0%. In pH 1.20 ± 0.05: 9.7%, 6.7%, 8.5%, 33.3%, 28.8%.</p><p><strong>Conclusions: </strong>Destruction of enteric coats of some local pantoprazole generics in CDKT-models might be a potential factor for inadequate therapy.</p>\",\"PeriodicalId\":11332,\"journal\":{\"name\":\"Drug metabolism and personalized therapy\",\"volume\":\"37 4\",\"pages\":\"383-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism and personalized therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dmpt-2021-0193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and personalized therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmpt-2021-0193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Potential factors of Helicobacter pylori resistance to clarithromycin.
Objectives: A comparative dissolution kinetics test (CDKT) and bioequivalence studies of generic proton pump inhibitors (PPIs) do not model pharmacological acid suppression (PAS) and pathological duodenogastric reflux (PDGR). This study aimed to model them in CDKT to assess drugs stability and potential pantoprazole-clarithromycin interactions.
Methods: In CDKT, PDGR (dissolution medium pH 7.00 ± 0.05, preexposure at pH 1.20 ± 0.05) and PAS (pH 4.00 ± 0.05) were modelled for original pantoprazole (OP) and its generics (GP1-4). In CDKT with high-performance liquid chromatography, dissolution gastric medium in adequate (pH 4.00 ± 0.05) and inadequate (pH 1.20 ± 0.05) PAS were modelled for original clarithromycin (OC) and its generics (GC1-4).
Results: After exposure in pH 7.00 ± 0.05, pantoprazole was released from GP1 within 10 min in the amount of 68.8%. In рН 4.00 ± 0.05, 83.0% and 81.5% of pantoprazole were released from GP1 and GP4. When OP, GP2 and GP3 were placed in pH 7.00 ± 0.05, pantoprazole was released in amount: 99.4%, 88.0% and 98.2%. Clarithromycin releasing from OC, GC1, GC2, GC3, GC4 in pH 4.00 ± 0.05 was 93.5%, 91.6%, 92.9%, 79.4% and 83.0%. In pH 1.20 ± 0.05: 9.7%, 6.7%, 8.5%, 33.3%, 28.8%.
Conclusions: Destruction of enteric coats of some local pantoprazole generics in CDKT-models might be a potential factor for inadequate therapy.
期刊介绍:
Drug Metabolism and Personalized Therapy (DMPT) is a peer-reviewed journal, and is abstracted/indexed in relevant major Abstracting Services. It provides up-to-date research articles, reviews and opinion papers in the wide field of drug metabolism research, covering established, new and potential drugs, environmentally toxic chemicals, the mechanisms by which drugs may interact with each other and with biological systems, and the pharmacological and toxicological consequences of these interactions and drug metabolism and excretion. Topics: drug metabolizing enzymes, pharmacogenetics and pharmacogenomics, biochemical pharmacology, molecular pathology, clinical pharmacology, pharmacokinetics and drug-drug interactions, immunopharmacology, neuropsychopharmacology.