{"title":"SRSF1通过竞争性结合CCND2与miRNA-135a促进哮喘ASMC增殖","authors":"Ya-li Guo , Zhuo-chang Chen , Nan Li , Cui-jie Tian , Dong-jun Cheng , Xue-yi Tang , Luo-xian Zhang , Xiao-yu Zhang","doi":"10.1016/j.pupt.2022.102173","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness<span>, bronchial inflammation, and airway remodeling. Abnormal proliferation of </span></span>airway smooth muscle cells<span> (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma.</span></p></div><div><h3>Methods</h3><p><span>SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by </span>immunohistochemistry<span>. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation<span> assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out.</span></span></p></div><div><h3>Results</h3><p>SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3′UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2.</p></div><div><h3>Conclusion</h3><p>SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.</p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"77 ","pages":"Article 102173"},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SRSF1 promotes ASMC proliferation in asthma by competitively binding CCND2 with miRNA-135a\",\"authors\":\"Ya-li Guo , Zhuo-chang Chen , Nan Li , Cui-jie Tian , Dong-jun Cheng , Xue-yi Tang , Luo-xian Zhang , Xiao-yu Zhang\",\"doi\":\"10.1016/j.pupt.2022.102173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><span>Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness<span>, bronchial inflammation, and airway remodeling. Abnormal proliferation of </span></span>airway smooth muscle cells<span> (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma.</span></p></div><div><h3>Methods</h3><p><span>SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by </span>immunohistochemistry<span>. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation<span> assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out.</span></span></p></div><div><h3>Results</h3><p>SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3′UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2.</p></div><div><h3>Conclusion</h3><p>SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.</p></div>\",\"PeriodicalId\":20799,\"journal\":{\"name\":\"Pulmonary pharmacology & therapeutics\",\"volume\":\"77 \",\"pages\":\"Article 102173\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary pharmacology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094553922000645\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553922000645","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
SRSF1 promotes ASMC proliferation in asthma by competitively binding CCND2 with miRNA-135a
Background
Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma.
Methods
SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by immunohistochemistry. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out.
Results
SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3′UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2.
Conclusion
SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.