João Dias de Toledo Arruda-Neto, Henriette Righi, José Gregório Cabrera Gomez, Luiziana Ferreira da Silva, Evandro Drigo, Aline Carolina da Costa Lemos
{"title":"辐射抗性和辐射敏感性:细菌细胞健壮性的生物物理学方法。","authors":"João Dias de Toledo Arruda-Neto, Henriette Righi, José Gregório Cabrera Gomez, Luiziana Ferreira da Silva, Evandro Drigo, Aline Carolina da Costa Lemos","doi":"10.1007/s12064-022-00382-w","DOIUrl":null,"url":null,"abstract":"<p><p>The study of radiosensitivity and radioresistance of organisms exposed to ionizing radiation has acquired additional relevance since a new bio-concept, coined as The primacy of Proteome over Genome, was proposed and demonstrated elsewhere a few years ago. According to that finding, genome integrity would require an actively functioning Proteome. However, when exposure to radiation takes place, Reactive Oxygen Species (ROS) from water radiolysis induce protein carbonylation (PC), an irreversible oxidative Proteome damage. The bio-models used in that study were the radiosensitive Escherichia coli and the extraordinarily robust Deinococcus radiodurans. The production of ROS induces protective reactions rendering them non-reactive forms. Protective entities present in the cytosol, moieties smaller than 3 kDa, shield the Proteome against ROS, yielding protection against carbonylation. Shown in the present study is the fact that the fate of proteins functionality is determined by the magnitude of the Protein Carbonylation Yield (Y<sub>PC</sub>), a quantity here analytically defined using published Y<sub>PC</sub> numerical results. Analytical Y<sub>PC</sub> expressions for E. coli and D. radiodurans were the input for a phenomenological approach, where the radiobiological magnitudes P<sub>P</sub> and P<sub>N</sub>, the probabilities for production of protein damage and ROS neutralization, respectively, were also analytically deduced. These highly relevant magnitudes, associated with key radiosensitivity and radioresistance issues, are addressed and discussed in this study. Among the plethora of information and conclusions derived from the present study, those endowed with higher conceptual degree, vis-à-vis the \"Primacy of Proteome over Genome\" concept, are as follows: (1) the ROS neutralization process in D. radiodurans reaches a maximum at a dose interval corresponding to the repairing shoulder. Therefore, it is a signature of the higher efficiency of the PC neutralization process. (2) ROS neutralization in D. radiodurans is nearly one order of magnitude higher than in E. coli, thus accounting for its extraordinary radioresistance. (3) Both physical (ROS-induced carbonyl radicals) and biological (protein modifications) processes are imbedded in the Protein Carbonylation Yield. The amalgamation of these two processes was accomplished by means of a statistical formalism.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":"142 1","pages":"13-28"},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Radioresistance and radiosensitivity: a biophysical approach on bacterial cells robustness.\",\"authors\":\"João Dias de Toledo Arruda-Neto, Henriette Righi, José Gregório Cabrera Gomez, Luiziana Ferreira da Silva, Evandro Drigo, Aline Carolina da Costa Lemos\",\"doi\":\"10.1007/s12064-022-00382-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of radiosensitivity and radioresistance of organisms exposed to ionizing radiation has acquired additional relevance since a new bio-concept, coined as The primacy of Proteome over Genome, was proposed and demonstrated elsewhere a few years ago. According to that finding, genome integrity would require an actively functioning Proteome. However, when exposure to radiation takes place, Reactive Oxygen Species (ROS) from water radiolysis induce protein carbonylation (PC), an irreversible oxidative Proteome damage. The bio-models used in that study were the radiosensitive Escherichia coli and the extraordinarily robust Deinococcus radiodurans. The production of ROS induces protective reactions rendering them non-reactive forms. Protective entities present in the cytosol, moieties smaller than 3 kDa, shield the Proteome against ROS, yielding protection against carbonylation. Shown in the present study is the fact that the fate of proteins functionality is determined by the magnitude of the Protein Carbonylation Yield (Y<sub>PC</sub>), a quantity here analytically defined using published Y<sub>PC</sub> numerical results. Analytical Y<sub>PC</sub> expressions for E. coli and D. radiodurans were the input for a phenomenological approach, where the radiobiological magnitudes P<sub>P</sub> and P<sub>N</sub>, the probabilities for production of protein damage and ROS neutralization, respectively, were also analytically deduced. These highly relevant magnitudes, associated with key radiosensitivity and radioresistance issues, are addressed and discussed in this study. Among the plethora of information and conclusions derived from the present study, those endowed with higher conceptual degree, vis-à-vis the \\\"Primacy of Proteome over Genome\\\" concept, are as follows: (1) the ROS neutralization process in D. radiodurans reaches a maximum at a dose interval corresponding to the repairing shoulder. Therefore, it is a signature of the higher efficiency of the PC neutralization process. (2) ROS neutralization in D. radiodurans is nearly one order of magnitude higher than in E. coli, thus accounting for its extraordinary radioresistance. (3) Both physical (ROS-induced carbonyl radicals) and biological (protein modifications) processes are imbedded in the Protein Carbonylation Yield. The amalgamation of these two processes was accomplished by means of a statistical formalism.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":\"142 1\",\"pages\":\"13-28\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-022-00382-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-022-00382-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Radioresistance and radiosensitivity: a biophysical approach on bacterial cells robustness.
The study of radiosensitivity and radioresistance of organisms exposed to ionizing radiation has acquired additional relevance since a new bio-concept, coined as The primacy of Proteome over Genome, was proposed and demonstrated elsewhere a few years ago. According to that finding, genome integrity would require an actively functioning Proteome. However, when exposure to radiation takes place, Reactive Oxygen Species (ROS) from water radiolysis induce protein carbonylation (PC), an irreversible oxidative Proteome damage. The bio-models used in that study were the radiosensitive Escherichia coli and the extraordinarily robust Deinococcus radiodurans. The production of ROS induces protective reactions rendering them non-reactive forms. Protective entities present in the cytosol, moieties smaller than 3 kDa, shield the Proteome against ROS, yielding protection against carbonylation. Shown in the present study is the fact that the fate of proteins functionality is determined by the magnitude of the Protein Carbonylation Yield (YPC), a quantity here analytically defined using published YPC numerical results. Analytical YPC expressions for E. coli and D. radiodurans were the input for a phenomenological approach, where the radiobiological magnitudes PP and PN, the probabilities for production of protein damage and ROS neutralization, respectively, were also analytically deduced. These highly relevant magnitudes, associated with key radiosensitivity and radioresistance issues, are addressed and discussed in this study. Among the plethora of information and conclusions derived from the present study, those endowed with higher conceptual degree, vis-à-vis the "Primacy of Proteome over Genome" concept, are as follows: (1) the ROS neutralization process in D. radiodurans reaches a maximum at a dose interval corresponding to the repairing shoulder. Therefore, it is a signature of the higher efficiency of the PC neutralization process. (2) ROS neutralization in D. radiodurans is nearly one order of magnitude higher than in E. coli, thus accounting for its extraordinary radioresistance. (3) Both physical (ROS-induced carbonyl radicals) and biological (protein modifications) processes are imbedded in the Protein Carbonylation Yield. The amalgamation of these two processes was accomplished by means of a statistical formalism.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.