Shudi Mao, Aiwen Miao, Yamei Cui, Jing Lu, Jianying Pan, Yishen Wang, Yiwen Hong, Yan Luo
{"title":"视网膜条件培养基的蛋白质组学分析:对胚胎干细胞早期向视网膜分化的影响。","authors":"Shudi Mao, Aiwen Miao, Yamei Cui, Jing Lu, Jianying Pan, Yishen Wang, Yiwen Hong, Yan Luo","doi":"10.1089/scd.2022.0067","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell replacement therapy has emerged as one of the most promising treatment options for retinal degenerative diseases, which are the main causes of irreversible vision loss. Three-dimensional (3D) retinal organoid culture is a cutting-edge technology for differentiating embryonic stem cells into retinal cells by forming a laminated retinal structure. However, 3D culture systems have strict requirements with respect to the experimental environment and culture technologies. Our study aimed to investigate the effect of retinal conditioned medium (RCM) at different developmental stages on the early differentiation of embryonic stem cells into retina in a 3D culture system. In this study, we added RCM to the 3D culture system and found that it could promote the differentiation of mouse embryonic stem cells (mESCs) into neuroretina. We further explored the possible mechanisms of RCM that regulate differentiation through proteomic analysis. RCM at different time points disclosed different protein profiles. Proteins which improved energy metabolism of mESCs might help improve the viability of embryonic bodies. We then screened out <i>Snap25</i>, <i>Cntn1</i>, <i>Negr1</i>, <i>Dpysl2</i>, <i>Dpysl3</i>, and <i>Crmp1</i> as candidate proteins that might play roles in the differentiation and neurogenesis processes of mESCs, hoping to provide a basis for optimizing a retinal differentiation protocol from embryonic stem cells.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proteomic Analysis of Retinal Conditioned Medium: The Effect on Early Differentiation of Embryonic Stem Cells into Retina.\",\"authors\":\"Shudi Mao, Aiwen Miao, Yamei Cui, Jing Lu, Jianying Pan, Yishen Wang, Yiwen Hong, Yan Luo\",\"doi\":\"10.1089/scd.2022.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell replacement therapy has emerged as one of the most promising treatment options for retinal degenerative diseases, which are the main causes of irreversible vision loss. Three-dimensional (3D) retinal organoid culture is a cutting-edge technology for differentiating embryonic stem cells into retinal cells by forming a laminated retinal structure. However, 3D culture systems have strict requirements with respect to the experimental environment and culture technologies. Our study aimed to investigate the effect of retinal conditioned medium (RCM) at different developmental stages on the early differentiation of embryonic stem cells into retina in a 3D culture system. In this study, we added RCM to the 3D culture system and found that it could promote the differentiation of mouse embryonic stem cells (mESCs) into neuroretina. We further explored the possible mechanisms of RCM that regulate differentiation through proteomic analysis. RCM at different time points disclosed different protein profiles. Proteins which improved energy metabolism of mESCs might help improve the viability of embryonic bodies. We then screened out <i>Snap25</i>, <i>Cntn1</i>, <i>Negr1</i>, <i>Dpysl2</i>, <i>Dpysl3</i>, and <i>Crmp1</i> as candidate proteins that might play roles in the differentiation and neurogenesis processes of mESCs, hoping to provide a basis for optimizing a retinal differentiation protocol from embryonic stem cells.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0067\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Proteomic Analysis of Retinal Conditioned Medium: The Effect on Early Differentiation of Embryonic Stem Cells into Retina.
Stem cell replacement therapy has emerged as one of the most promising treatment options for retinal degenerative diseases, which are the main causes of irreversible vision loss. Three-dimensional (3D) retinal organoid culture is a cutting-edge technology for differentiating embryonic stem cells into retinal cells by forming a laminated retinal structure. However, 3D culture systems have strict requirements with respect to the experimental environment and culture technologies. Our study aimed to investigate the effect of retinal conditioned medium (RCM) at different developmental stages on the early differentiation of embryonic stem cells into retina in a 3D culture system. In this study, we added RCM to the 3D culture system and found that it could promote the differentiation of mouse embryonic stem cells (mESCs) into neuroretina. We further explored the possible mechanisms of RCM that regulate differentiation through proteomic analysis. RCM at different time points disclosed different protein profiles. Proteins which improved energy metabolism of mESCs might help improve the viability of embryonic bodies. We then screened out Snap25, Cntn1, Negr1, Dpysl2, Dpysl3, and Crmp1 as candidate proteins that might play roles in the differentiation and neurogenesis processes of mESCs, hoping to provide a basis for optimizing a retinal differentiation protocol from embryonic stem cells.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development