专题综述:免疫治疗的未来。

IF 4.1 Q2 IMMUNOLOGY
Cornelis J M Melief
{"title":"专题综述:免疫治疗的未来。","authors":"Cornelis J M Melief","doi":"10.1093/immadv/ltaa005","DOIUrl":null,"url":null,"abstract":"<p><p>During the last two decades, two main schools of modern immunotherapy have come to the forefront. The chimeric anti-CD20 antibody rituximab that was introduced for the treatment of refractory follicular lymphoma in 1998 was one of the first examples of the school of passive immunotherapy. Subsequently major and ever more costly efforts were spent on the development of blockbuster monotherapies including other monoclonal but also bispecific antibodies of highly defined specificity and subclass, antibody-drug conjugates (ADCs), as well as <i>ex vivo</i> expanded tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR)-transduced T cells, and TCR-transduced T cells. On the other hand, there is the school that works toward active induction of patient B- or T-cell immunity against antigens of choice, or active tolerance against pathogenic allergens, auto-antigens or allo-antigens. Stradled in between these two approaches is treatment with blockers of T cell checkpoint control, which releases the brakes of T cells that have already responded to antigen. Extensive and detailed insight into the cellular and molecular interactions that regulate specific immune responses is indispensable in order to be able to optimize efficacy and rule out treatment related toxicity. This applies to all types of immunotherapy. Our knowledge of the checks and balances in the immune system is still increasing at an unprecedented pace, fostering ever more effective and specific (combination) immunotherapies and offering a rich harvest of innovative immunotherapies in the years ahead.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/immadv/ltaa005","citationCount":"4","resultStr":"{\"title\":\"Special Review: The future of Immunotherapy.\",\"authors\":\"Cornelis J M Melief\",\"doi\":\"10.1093/immadv/ltaa005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the last two decades, two main schools of modern immunotherapy have come to the forefront. The chimeric anti-CD20 antibody rituximab that was introduced for the treatment of refractory follicular lymphoma in 1998 was one of the first examples of the school of passive immunotherapy. Subsequently major and ever more costly efforts were spent on the development of blockbuster monotherapies including other monoclonal but also bispecific antibodies of highly defined specificity and subclass, antibody-drug conjugates (ADCs), as well as <i>ex vivo</i> expanded tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR)-transduced T cells, and TCR-transduced T cells. On the other hand, there is the school that works toward active induction of patient B- or T-cell immunity against antigens of choice, or active tolerance against pathogenic allergens, auto-antigens or allo-antigens. Stradled in between these two approaches is treatment with blockers of T cell checkpoint control, which releases the brakes of T cells that have already responded to antigen. Extensive and detailed insight into the cellular and molecular interactions that regulate specific immune responses is indispensable in order to be able to optimize efficacy and rule out treatment related toxicity. This applies to all types of immunotherapy. Our knowledge of the checks and balances in the immune system is still increasing at an unprecedented pace, fostering ever more effective and specific (combination) immunotherapies and offering a rich harvest of innovative immunotherapies in the years ahead.</p>\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/immadv/ltaa005\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltaa005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltaa005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

在过去的二十年里,现代免疫疗法的两个主要流派已经走到了最前沿。嵌合抗cd20抗体美罗华(rituximab)于1998年被引入治疗难治性滤泡性淋巴瘤,是被动免疫疗法的首批例子之一。随后,主要的和更昂贵的努力被花在了重卖单药疗法的开发上,包括其他单克隆抗体,但也包括高度确定特异性和亚类的双特异性抗体,抗体-药物偶联物(adc),以及体外扩增肿瘤浸润淋巴细胞,嵌合抗原受体(CAR)转导的T细胞和tcr转导的T细胞。另一方面,有一种学派致力于主动诱导患者B细胞或t细胞免疫来对抗选择的抗原,或主动耐受致病性过敏原、自身抗原或同种抗原。介于这两种方法之间的是使用T细胞检查点控制的阻滞剂治疗,它可以释放已经对抗原作出反应的T细胞的刹车。为了能够优化疗效并排除治疗相关毒性,对调节特异性免疫反应的细胞和分子相互作用进行广泛而详细的了解是必不可少的。这适用于所有类型的免疫疗法。我们对免疫系统制衡的了解仍在以前所未有的速度增长,促进了更有效和特异性(组合)免疫疗法的发展,并在未来几年提供了创新免疫疗法的丰富收获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special Review: The future of Immunotherapy.

During the last two decades, two main schools of modern immunotherapy have come to the forefront. The chimeric anti-CD20 antibody rituximab that was introduced for the treatment of refractory follicular lymphoma in 1998 was one of the first examples of the school of passive immunotherapy. Subsequently major and ever more costly efforts were spent on the development of blockbuster monotherapies including other monoclonal but also bispecific antibodies of highly defined specificity and subclass, antibody-drug conjugates (ADCs), as well as ex vivo expanded tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR)-transduced T cells, and TCR-transduced T cells. On the other hand, there is the school that works toward active induction of patient B- or T-cell immunity against antigens of choice, or active tolerance against pathogenic allergens, auto-antigens or allo-antigens. Stradled in between these two approaches is treatment with blockers of T cell checkpoint control, which releases the brakes of T cells that have already responded to antigen. Extensive and detailed insight into the cellular and molecular interactions that regulate specific immune responses is indispensable in order to be able to optimize efficacy and rule out treatment related toxicity. This applies to all types of immunotherapy. Our knowledge of the checks and balances in the immune system is still increasing at an unprecedented pace, fostering ever more effective and specific (combination) immunotherapies and offering a rich harvest of innovative immunotherapies in the years ahead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信