银屑病严重程度诊断预测模型的开发和内部验证。

Mie Sylow Liljendahl, Nikolai Loft, Alexander Egeberg, Lone Skov, Tri-Long Nguyen
{"title":"银屑病严重程度诊断预测模型的开发和内部验证。","authors":"Mie Sylow Liljendahl,&nbsp;Nikolai Loft,&nbsp;Alexander Egeberg,&nbsp;Lone Skov,&nbsp;Tri-Long Nguyen","doi":"10.1186/s41512-023-00141-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While administrative health records such as national registries may be useful data sources to study the epidemiology of psoriasis, they do not generally contain information on disease severity.</p><p><strong>Objectives: </strong>To develop a diagnostic model to distinguish psoriasis severity based on administrative register data.</p><p><strong>Method: </strong>We conducted a retrospective registry-based cohort study using the Danish Skin Cohort linked with the Danish national registries. We developed a diagnostic model using a gradient boosting machine learning technique to predict moderate-to-severe psoriasis. We performed an internal validation of the model by bootstrapping to account for any optimism.</p><p><strong>Results: </strong>Among 4016 adult psoriasis patients (55.8% women, mean age 59 years) included in this study, 1212 (30.2%) patients were identified as having moderate-to-severe psoriasis. The diagnostic prediction model yielded a bootstrap-corrected discrimination performance: c-statistic equal to 0.73 [95% CI: 0.71-0.74]. The internal validation by bootstrap correction showed no substantial optimism in the results with a c-statistic of 0.72 [95% CI: 0.70-0.74]. A bootstrap-corrected slope of 1.10 [95% CI: 1.07-1.13] indicated a slight under-fitting.</p><p><strong>Conclusion: </strong>Based on register data, we developed a gradient boosting diagnostic model returning acceptable prediction of patients with moderate-to-severe psoriasis.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903561/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and internal validation of a diagnostic prediction model for psoriasis severity.\",\"authors\":\"Mie Sylow Liljendahl,&nbsp;Nikolai Loft,&nbsp;Alexander Egeberg,&nbsp;Lone Skov,&nbsp;Tri-Long Nguyen\",\"doi\":\"10.1186/s41512-023-00141-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While administrative health records such as national registries may be useful data sources to study the epidemiology of psoriasis, they do not generally contain information on disease severity.</p><p><strong>Objectives: </strong>To develop a diagnostic model to distinguish psoriasis severity based on administrative register data.</p><p><strong>Method: </strong>We conducted a retrospective registry-based cohort study using the Danish Skin Cohort linked with the Danish national registries. We developed a diagnostic model using a gradient boosting machine learning technique to predict moderate-to-severe psoriasis. We performed an internal validation of the model by bootstrapping to account for any optimism.</p><p><strong>Results: </strong>Among 4016 adult psoriasis patients (55.8% women, mean age 59 years) included in this study, 1212 (30.2%) patients were identified as having moderate-to-severe psoriasis. The diagnostic prediction model yielded a bootstrap-corrected discrimination performance: c-statistic equal to 0.73 [95% CI: 0.71-0.74]. The internal validation by bootstrap correction showed no substantial optimism in the results with a c-statistic of 0.72 [95% CI: 0.70-0.74]. A bootstrap-corrected slope of 1.10 [95% CI: 1.07-1.13] indicated a slight under-fitting.</p><p><strong>Conclusion: </strong>Based on register data, we developed a gradient boosting diagnostic model returning acceptable prediction of patients with moderate-to-severe psoriasis.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\"7 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-023-00141-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-023-00141-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:虽然国家登记等行政卫生记录可能是研究牛皮癣流行病学的有用数据来源,但它们通常不包含疾病严重程度的信息。目的:建立一种基于行政登记数据区分银屑病严重程度的诊断模型。方法:我们进行了一项基于登记的回顾性队列研究,使用丹麦皮肤队列与丹麦国家登记处相关联。我们开发了一个使用梯度增强机器学习技术的诊断模型来预测中度至重度牛皮癣。我们通过自举对模型进行了内部验证,以解释任何乐观主义。结果:在本研究纳入的4016例成年牛皮癣患者(55.8%为女性,平均年龄59岁)中,1212例(30.2%)患者被确定为中度至重度牛皮癣。诊断预测模型产生了bootstrap校正的识别性能:c统计量等于0.73 [95% CI: 0.71-0.74]。自举校正的内部验证显示,c统计量为0.72 [95% CI: 0.70-0.74],结果没有实质性的乐观。自举校正的斜率为1.10 [95% CI: 1.07-1.13]表明有轻微的拟合不足。结论:基于登记数据,我们开发了一种梯度增强诊断模型,可对中重度牛皮癣患者进行可接受的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and internal validation of a diagnostic prediction model for psoriasis severity.

Development and internal validation of a diagnostic prediction model for psoriasis severity.

Development and internal validation of a diagnostic prediction model for psoriasis severity.

Background: While administrative health records such as national registries may be useful data sources to study the epidemiology of psoriasis, they do not generally contain information on disease severity.

Objectives: To develop a diagnostic model to distinguish psoriasis severity based on administrative register data.

Method: We conducted a retrospective registry-based cohort study using the Danish Skin Cohort linked with the Danish national registries. We developed a diagnostic model using a gradient boosting machine learning technique to predict moderate-to-severe psoriasis. We performed an internal validation of the model by bootstrapping to account for any optimism.

Results: Among 4016 adult psoriasis patients (55.8% women, mean age 59 years) included in this study, 1212 (30.2%) patients were identified as having moderate-to-severe psoriasis. The diagnostic prediction model yielded a bootstrap-corrected discrimination performance: c-statistic equal to 0.73 [95% CI: 0.71-0.74]. The internal validation by bootstrap correction showed no substantial optimism in the results with a c-statistic of 0.72 [95% CI: 0.70-0.74]. A bootstrap-corrected slope of 1.10 [95% CI: 1.07-1.13] indicated a slight under-fitting.

Conclusion: Based on register data, we developed a gradient boosting diagnostic model returning acceptable prediction of patients with moderate-to-severe psoriasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信