Roshanak Aslebagh, Danielle Whitham, Devika Channaveerappa, Panashe Mutsengi, Brian T Pentecost, Kathleen F Arcaro, Costel C Darie
{"title":"基于质谱的人类乳汁蛋白质组学鉴定乳腺癌妇女与对照组中不同表达的蛋白质","authors":"Roshanak Aslebagh, Danielle Whitham, Devika Channaveerappa, Panashe Mutsengi, Brian T Pentecost, Kathleen F Arcaro, Costel C Darie","doi":"10.3390/proteomes10040036","DOIUrl":null,"url":null,"abstract":"<p><p>It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"10 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls.\",\"authors\":\"Roshanak Aslebagh, Danielle Whitham, Devika Channaveerappa, Panashe Mutsengi, Brian T Pentecost, Kathleen F Arcaro, Costel C Darie\",\"doi\":\"10.3390/proteomes10040036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes10040036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes10040036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
准确的乳腺癌(BC)风险评估和早期诊断有助于降低癌症相关死亡率。对母乳进行蛋白质组学分析可提供风险和隐性疾病的生物标志物。我们的研究小组致力于分析患有乳腺癌的妇女和对照组的母乳样本,研究可能与乳腺癌有关的母乳蛋白质模式的改变。在目前的研究中,我们使用基于质谱(MS)的蛋白质组学分析方法,分析了 12 份来自 BC 供体和匹配对照组的牛奶样本。具体来说,我们使用了一维(1D)聚丙烯酰胺凝胶电泳(PAGE)和纳米液相色谱串联质谱(nanoLC-MS/MS),然后进行了生物信息学分析。我们证实了之前在另一组牛奶样本中发现的几种蛋白质的失调。我们还发现了其他在癌症发展中发挥作用的牛奶蛋白质的失调,如乳粘连蛋白异构体 A、O-连接的 N-乙酰葡糖胺(GlcNAc)转移酶、半乳糖基转移酶、复原素、周脂素-3 异构体 1、组蛋白-赖氨酸甲基转移酶或 clathrin 重链。我们的研究结果拓展了我们目前对利用牛奶作为生物液体鉴定 BC 相关失调蛋白的认识。总之,我们的研究结果还表明,牛奶有可能被用于发现乳腺癌生物标志物、早期检测和评估生殖活跃的年轻女性的乳腺癌风险。
Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls.
It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics