{"title":"BVDU的发展:一个奥德赛。","authors":"Erik De Clercq","doi":"10.1177/20402066231152971","DOIUrl":null,"url":null,"abstract":"<p><p>Brivudin, ((<i>E</i>)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) can be considered the gold standard for the treatment of varicella-zoster virus (VZV) infections, such as herpes zoster (shingles). It is available for clinical use in most European countries (except for the UK) and over the whole world (except for the US and Canada). Besides VZV its activity spectrum also includes various other herpesviruses, such as herpes simplex virus type 1 (HSV-1). Its activity against VZV and HSV-1 depends on phosphorylation by the virus-encoded thymidine kinase (TK). In its active form (BVDU TP or BVDU 5'-triphosphate), it can act as both substrate and inhibitor of the viral (i.e., HSV-1) DNA polymerase. It has proven to be effective against herpes zoster, including post-herpetic neuralgia (PHN). It is contra-indicated in patients concomitantly treated by 5-fluorouracil (FU), since its degradation product, (<i>E</i>)-5-(2-bromovinyl)uracil, is inhibitory to the catabolism of FU, which may enhance the toxicity of the latter. A new compound, the bicyclic nucleoside analogue (BCNA) Cf-1743, has been described, which is a more potent inhibitor of VZV replication than BVDU and which does not interfere with the catabolism of FU. It is applicable orally, as its 5'-valine ester FV-100 (Fermavir), but has not (yet) been marketed for clinical use.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"31 ","pages":"20402066231152971"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/20/10.1177_20402066231152971.PMC9902897.pdf","citationCount":"0","resultStr":"{\"title\":\"The development of BVDU: An odyssey.\",\"authors\":\"Erik De Clercq\",\"doi\":\"10.1177/20402066231152971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brivudin, ((<i>E</i>)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) can be considered the gold standard for the treatment of varicella-zoster virus (VZV) infections, such as herpes zoster (shingles). It is available for clinical use in most European countries (except for the UK) and over the whole world (except for the US and Canada). Besides VZV its activity spectrum also includes various other herpesviruses, such as herpes simplex virus type 1 (HSV-1). Its activity against VZV and HSV-1 depends on phosphorylation by the virus-encoded thymidine kinase (TK). In its active form (BVDU TP or BVDU 5'-triphosphate), it can act as both substrate and inhibitor of the viral (i.e., HSV-1) DNA polymerase. It has proven to be effective against herpes zoster, including post-herpetic neuralgia (PHN). It is contra-indicated in patients concomitantly treated by 5-fluorouracil (FU), since its degradation product, (<i>E</i>)-5-(2-bromovinyl)uracil, is inhibitory to the catabolism of FU, which may enhance the toxicity of the latter. A new compound, the bicyclic nucleoside analogue (BCNA) Cf-1743, has been described, which is a more potent inhibitor of VZV replication than BVDU and which does not interfere with the catabolism of FU. It is applicable orally, as its 5'-valine ester FV-100 (Fermavir), but has not (yet) been marketed for clinical use.</p>\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"31 \",\"pages\":\"20402066231152971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/20/10.1177_20402066231152971.PMC9902897.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20402066231152971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20402066231152971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Brivudin, ((E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) can be considered the gold standard for the treatment of varicella-zoster virus (VZV) infections, such as herpes zoster (shingles). It is available for clinical use in most European countries (except for the UK) and over the whole world (except for the US and Canada). Besides VZV its activity spectrum also includes various other herpesviruses, such as herpes simplex virus type 1 (HSV-1). Its activity against VZV and HSV-1 depends on phosphorylation by the virus-encoded thymidine kinase (TK). In its active form (BVDU TP or BVDU 5'-triphosphate), it can act as both substrate and inhibitor of the viral (i.e., HSV-1) DNA polymerase. It has proven to be effective against herpes zoster, including post-herpetic neuralgia (PHN). It is contra-indicated in patients concomitantly treated by 5-fluorouracil (FU), since its degradation product, (E)-5-(2-bromovinyl)uracil, is inhibitory to the catabolism of FU, which may enhance the toxicity of the latter. A new compound, the bicyclic nucleoside analogue (BCNA) Cf-1743, has been described, which is a more potent inhibitor of VZV replication than BVDU and which does not interfere with the catabolism of FU. It is applicable orally, as its 5'-valine ester FV-100 (Fermavir), but has not (yet) been marketed for clinical use.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.