LiangZhe Liu , Carmen Oi Kwan Law , Qichang Nie , Hoa Quynh Pham , Haiying Ma , Liang Zhang , Pak Leung Ho , Terrence Chi-Kong Lau
{"title":"对尿路致病性大肠杆菌外膜囊泡的比较分析揭示了芳香氨基酸合成蛋白在运动中的作用","authors":"LiangZhe Liu , Carmen Oi Kwan Law , Qichang Nie , Hoa Quynh Pham , Haiying Ma , Liang Zhang , Pak Leung Ho , Terrence Chi-Kong Lau","doi":"10.1016/j.ijmm.2023.151573","DOIUrl":null,"url":null,"abstract":"<div><p>Uropathogenic <em>Escherichia coli</em> (UPEC) are causative agent that causes urinary tract infections (UTIs) and the recent emergence of multidrug resistance (MDR) of UPEC increases the burden on the community. Recent studies of bacterial outer membrane vesicles (OMV) identified various factors including proteins, nucleic acids, and small molecules which provided inter-cellular communication within the bacterial population. However, the components of UPEC-specific OMVs and their functional role remain unclear. Here, we systematically determined the proteomes of UPEC-OMVs and identified the specific components that provide functions to the recipient bacteria. Based on the functional network of OMVs’ proteomes, a group of signaling peptides was found in all OMVs which provide communication among bacteria. Moreover, we demonstrated that treatment with UPEC-OMVs affected the motility and biofilm formation of the recipient bacteria, and further identified aromatic amino acid (AAA) biosynthesis proteins as the key factors to provide their movement.</p></div>","PeriodicalId":50312,"journal":{"name":"International Journal of Medical Microbiology","volume":"313 1","pages":"Article 151573"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative analysis of outer membrane vesicles from uropathogenic Escherichia coli reveal the role of aromatic amino acids synthesis proteins in motility\",\"authors\":\"LiangZhe Liu , Carmen Oi Kwan Law , Qichang Nie , Hoa Quynh Pham , Haiying Ma , Liang Zhang , Pak Leung Ho , Terrence Chi-Kong Lau\",\"doi\":\"10.1016/j.ijmm.2023.151573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Uropathogenic <em>Escherichia coli</em> (UPEC) are causative agent that causes urinary tract infections (UTIs) and the recent emergence of multidrug resistance (MDR) of UPEC increases the burden on the community. Recent studies of bacterial outer membrane vesicles (OMV) identified various factors including proteins, nucleic acids, and small molecules which provided inter-cellular communication within the bacterial population. However, the components of UPEC-specific OMVs and their functional role remain unclear. Here, we systematically determined the proteomes of UPEC-OMVs and identified the specific components that provide functions to the recipient bacteria. Based on the functional network of OMVs’ proteomes, a group of signaling peptides was found in all OMVs which provide communication among bacteria. Moreover, we demonstrated that treatment with UPEC-OMVs affected the motility and biofilm formation of the recipient bacteria, and further identified aromatic amino acid (AAA) biosynthesis proteins as the key factors to provide their movement.</p></div>\",\"PeriodicalId\":50312,\"journal\":{\"name\":\"International Journal of Medical Microbiology\",\"volume\":\"313 1\",\"pages\":\"Article 151573\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1438422123000012\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438422123000012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Comparative analysis of outer membrane vesicles from uropathogenic Escherichia coli reveal the role of aromatic amino acids synthesis proteins in motility
Uropathogenic Escherichia coli (UPEC) are causative agent that causes urinary tract infections (UTIs) and the recent emergence of multidrug resistance (MDR) of UPEC increases the burden on the community. Recent studies of bacterial outer membrane vesicles (OMV) identified various factors including proteins, nucleic acids, and small molecules which provided inter-cellular communication within the bacterial population. However, the components of UPEC-specific OMVs and their functional role remain unclear. Here, we systematically determined the proteomes of UPEC-OMVs and identified the specific components that provide functions to the recipient bacteria. Based on the functional network of OMVs’ proteomes, a group of signaling peptides was found in all OMVs which provide communication among bacteria. Moreover, we demonstrated that treatment with UPEC-OMVs affected the motility and biofilm formation of the recipient bacteria, and further identified aromatic amino acid (AAA) biosynthesis proteins as the key factors to provide their movement.
期刊介绍:
Pathogen genome sequencing projects have provided a wealth of data that need to be set in context to pathogenicity and the outcome of infections. In addition, the interplay between a pathogen and its host cell has become increasingly important to understand and interfere with diseases caused by microbial pathogens. IJMM meets these needs by focussing on genome and proteome analyses, studies dealing with the molecular mechanisms of pathogenicity and the evolution of pathogenic agents, the interactions between pathogens and host cells ("cellular microbiology"), and molecular epidemiology. To help the reader keeping up with the rapidly evolving new findings in the field of medical microbiology, IJMM publishes original articles, case studies and topical, state-of-the-art mini-reviews in a well balanced fashion. All articles are strictly peer-reviewed. Important topics are reinforced by 2 special issues per year dedicated to a particular theme. Finally, at irregular intervals, current opinions on recent or future developments in medical microbiology are presented in an editorial section.