{"title":"使用预先设计的体外转录引导rna的CRISPR-Cas9 F0敲除方法部分再现了Rx3在眼睛形态发生中的功能。","authors":"Emilia Wysocka, Agata Gonicka, Savani Anbalagan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9-based F0 knockout (KO) approach permits relatively simple and rapid generation of homozygous KOs and allows quick investigation of gene functions in zebrafish. However, F0 KO studies are largely performed using commercial synthetic guide RNAs (gRNAs) which are unaffordable by majority of the researchers. We tested (i) how effective is the CRISPR-Cas9-based F0 KO approach using <i>in vitro</i> transcribed gRNAs; (ii) how penetrant are the resulting phenotype at the later developmental stages and (iii) whether Coughlin's group pre-designed gRNAs are functional even without validating the gRNAs or testing for lack of SNP's in target loci. We targeted the <i>rx3</i> gene that is required for the formation of the eye, a structure that exhibits robustness and can quickly recover from early phenotypes. Our results indicate that, in the majority of the samples, injection of Cas9 protein complex with four different in vitro transcribed gRNAs; targeting <i>rx3</i> results in lack of eyes or disrupted eye development. Thus, the CRISPR-Cas9-based F0 KO approach using pre-designed, quadruple <i>in vitro</i> transcribed gRNAs can recapitulate the function of a gene at least until 5-dpf stage of larval zebrafish.</p>","PeriodicalId":15907,"journal":{"name":"Journal of Genetics","volume":"102 ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR-Cas9 F0 knockout approach using predesigned in vitro transcribed guide RNAs partially recapitulates Rx3 function in eye morphogenesis.\",\"authors\":\"Emilia Wysocka, Agata Gonicka, Savani Anbalagan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-Cas9-based F0 knockout (KO) approach permits relatively simple and rapid generation of homozygous KOs and allows quick investigation of gene functions in zebrafish. However, F0 KO studies are largely performed using commercial synthetic guide RNAs (gRNAs) which are unaffordable by majority of the researchers. We tested (i) how effective is the CRISPR-Cas9-based F0 KO approach using <i>in vitro</i> transcribed gRNAs; (ii) how penetrant are the resulting phenotype at the later developmental stages and (iii) whether Coughlin's group pre-designed gRNAs are functional even without validating the gRNAs or testing for lack of SNP's in target loci. We targeted the <i>rx3</i> gene that is required for the formation of the eye, a structure that exhibits robustness and can quickly recover from early phenotypes. Our results indicate that, in the majority of the samples, injection of Cas9 protein complex with four different in vitro transcribed gRNAs; targeting <i>rx3</i> results in lack of eyes or disrupted eye development. Thus, the CRISPR-Cas9-based F0 KO approach using pre-designed, quadruple <i>in vitro</i> transcribed gRNAs can recapitulate the function of a gene at least until 5-dpf stage of larval zebrafish.</p>\",\"PeriodicalId\":15907,\"journal\":{\"name\":\"Journal of Genetics\",\"volume\":\"102 \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
CRISPR-Cas9 F0 knockout approach using predesigned in vitro transcribed guide RNAs partially recapitulates Rx3 function in eye morphogenesis.
CRISPR-Cas9-based F0 knockout (KO) approach permits relatively simple and rapid generation of homozygous KOs and allows quick investigation of gene functions in zebrafish. However, F0 KO studies are largely performed using commercial synthetic guide RNAs (gRNAs) which are unaffordable by majority of the researchers. We tested (i) how effective is the CRISPR-Cas9-based F0 KO approach using in vitro transcribed gRNAs; (ii) how penetrant are the resulting phenotype at the later developmental stages and (iii) whether Coughlin's group pre-designed gRNAs are functional even without validating the gRNAs or testing for lack of SNP's in target loci. We targeted the rx3 gene that is required for the formation of the eye, a structure that exhibits robustness and can quickly recover from early phenotypes. Our results indicate that, in the majority of the samples, injection of Cas9 protein complex with four different in vitro transcribed gRNAs; targeting rx3 results in lack of eyes or disrupted eye development. Thus, the CRISPR-Cas9-based F0 KO approach using pre-designed, quadruple in vitro transcribed gRNAs can recapitulate the function of a gene at least until 5-dpf stage of larval zebrafish.
期刊介绍:
The journal retains its traditional interest in evolutionary research that is of relevance to geneticists, even if this is not explicitly genetical in nature. The journal covers all areas of genetics and evolution,including molecular genetics and molecular evolution.It publishes papers and review articles on current topics, commentaries and essayson ideas and trends in genetics and evolutionary biology, historical developments, debates and book reviews. From 2010 onwards, the journal has published a special category of papers termed ‘Online Resources’. These are brief reports on the development and the routine use of molecular markers for assessing genetic variability within and among species. Also published are reports outlining pedagogical approaches in genetics teaching.