Lin Jia, Wenzhe Wang, Hui Liu, Fan Zhu, Yunfang Huang
{"title":"LncRNA TTN-AS1通过miR-493-3p/FOXP2轴加剧糖尿病肾病的细胞外基质积累。","authors":"Lin Jia, Wenzhe Wang, Hui Liu, Fan Zhu, Yunfang Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN), a common cause of chronic renal failure and end-stage renal disease, leads to a high mortality. However, the role of TTN-AS1 in extracellular matrix (ECM) accumulation during DN remains unclear. In our study, TTN-AS1 exhibited high expression in high glucose-treated mesangial cells, and TTN-AS1 silencing alleviated high glucose-induced ECM accumulation in mesangial cells. Additionally, animal study revealed that TTN-AS1 was upregulated in renal tissues of DN rats, and TTN-AS1 knockdown mitigated renal injury of DN rats. Mechanistically, TTN-AS1 was validated to bind to miR-493-3p, and miR-493-3p targeted forkhead box P2 (FOXP2) 3'untranslated region in mesangial cells. TTN-AS1 interacted with miR-493-3p to upregulate FOXP2 <i>in vitro</i> and <i>in vivo</i>. Moreover, FOXP2 overexpression counteracted the effects of TTN-AS1 silencing on the ECM accumulation. In conclusion, TTN-AS1 exacerbated ECM accumulation via the miR-493-3p/FOXP2 axis during DN development. This research may provide a potential new direction for DN treatment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy.\",\"authors\":\"Lin Jia, Wenzhe Wang, Hui Liu, Fan Zhu, Yunfang Huang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic nephropathy (DN), a common cause of chronic renal failure and end-stage renal disease, leads to a high mortality. However, the role of TTN-AS1 in extracellular matrix (ECM) accumulation during DN remains unclear. In our study, TTN-AS1 exhibited high expression in high glucose-treated mesangial cells, and TTN-AS1 silencing alleviated high glucose-induced ECM accumulation in mesangial cells. Additionally, animal study revealed that TTN-AS1 was upregulated in renal tissues of DN rats, and TTN-AS1 knockdown mitigated renal injury of DN rats. Mechanistically, TTN-AS1 was validated to bind to miR-493-3p, and miR-493-3p targeted forkhead box P2 (FOXP2) 3'untranslated region in mesangial cells. TTN-AS1 interacted with miR-493-3p to upregulate FOXP2 <i>in vitro</i> and <i>in vivo</i>. Moreover, FOXP2 overexpression counteracted the effects of TTN-AS1 silencing on the ECM accumulation. In conclusion, TTN-AS1 exacerbated ECM accumulation via the miR-493-3p/FOXP2 axis during DN development. This research may provide a potential new direction for DN treatment.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy.
Diabetic nephropathy (DN), a common cause of chronic renal failure and end-stage renal disease, leads to a high mortality. However, the role of TTN-AS1 in extracellular matrix (ECM) accumulation during DN remains unclear. In our study, TTN-AS1 exhibited high expression in high glucose-treated mesangial cells, and TTN-AS1 silencing alleviated high glucose-induced ECM accumulation in mesangial cells. Additionally, animal study revealed that TTN-AS1 was upregulated in renal tissues of DN rats, and TTN-AS1 knockdown mitigated renal injury of DN rats. Mechanistically, TTN-AS1 was validated to bind to miR-493-3p, and miR-493-3p targeted forkhead box P2 (FOXP2) 3'untranslated region in mesangial cells. TTN-AS1 interacted with miR-493-3p to upregulate FOXP2 in vitro and in vivo. Moreover, FOXP2 overexpression counteracted the effects of TTN-AS1 silencing on the ECM accumulation. In conclusion, TTN-AS1 exacerbated ECM accumulation via the miR-493-3p/FOXP2 axis during DN development. This research may provide a potential new direction for DN treatment.