在集群水平治疗效果异质性和干扰存在的情况下评估时变因果效应调节。

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-09-01 DOI:10.1093/biomet/asac065
Jieru Shi, Zhenke Wu, Walter Dempsey
{"title":"在集群水平治疗效果异质性和干扰存在的情况下评估时变因果效应调节。","authors":"Jieru Shi,&nbsp;Zhenke Wu,&nbsp;Walter Dempsey","doi":"10.1093/biomet/asac065","DOIUrl":null,"url":null,"abstract":"<p><p>The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed \"causal excursion effects\", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 3","pages":"645-662"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501736/pdf/nihms-1882489.pdf","citationCount":"2","resultStr":"{\"title\":\"ASSESSING TIME-VARYING CAUSAL EFFECT MODERATION IN THE PRESENCE OF CLUSTER-LEVEL TREATMENT EFFECT HETEROGENEITY AND INTERFERENCE.\",\"authors\":\"Jieru Shi,&nbsp;Zhenke Wu,&nbsp;Walter Dempsey\",\"doi\":\"10.1093/biomet/asac065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed \\\"causal excursion effects\\\", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.</p>\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"110 3\",\"pages\":\"645-662\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501736/pdf/nihms-1882489.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asac065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

微随机试验(MRT)是一种顺序随机实验设计,旨在经验性地评估可能在数百或数千个决策点提供的移动医疗(mHealth)干预组件的有效性。mrt激发了一类新的因果估计,称为“因果偏移效应”,其中半参数推理可以通过加权的中心最小二乘准则进行(Boruvka等人,2018)。现有的方法假设主体间独立性和不干涉性。偏离这些假设的情况经常发生。本文在潜在的集群水平治疗效应异质性和干扰下重新审视了因果偏移效应,其中感兴趣的治疗效应可能取决于集群水平调节因子。通过分析来自美国多机构的第一年住院医生队列的数据,显示了所提出方法的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASSESSING TIME-VARYING CAUSAL EFFECT MODERATION IN THE PRESENCE OF CLUSTER-LEVEL TREATMENT EFFECT HETEROGENEITY AND INTERFERENCE.

The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed "causal excursion effects", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信