Seshiru Nakazawa, Toshiteru Nagashima, Natsuko Kawatani, Patrick C Gedeon, Ariadne K DeSimone, Hitoshi Igai, Takayuki Kosaka, Ken Shirabe
{"title":"通过3D-CT成像重新检查肺部解剖。","authors":"Seshiru Nakazawa, Toshiteru Nagashima, Natsuko Kawatani, Patrick C Gedeon, Ariadne K DeSimone, Hitoshi Igai, Takayuki Kosaka, Ken Shirabe","doi":"10.21037/vats-23-21","DOIUrl":null,"url":null,"abstract":"<p><p>The anatomy of the lung was originally described based on data acquired from cadaveric studies and surgical findings. Over time, computed tomography (CT) and three-dimensional (3D) imaging techniques have been developed, allowing for reconstruction and understanding of lung anatomy in a more intuitive way. The wide adoption of 3D-CT imaging technology has led to a variety of anatomical studies performed not only by anatomists but also by surgeons and radiologists. Such studies have led to new or modified classification systems, shed light on lung anatomy from a useful surgical viewpoint, and enabled us to analyze lung anatomy with a focus on particular anatomical features. 3D images also allow for enhanced pre- and intra-operative simulation, improved surgical safety, enhanced educational utility, and the capacity to perform large-scale anatomical studies in shorter time frames. We will review here the key features of 3D-CT imaging of the lung, along with representative anatomical studies regarding (I) general lung anatomy, (II) anatomy of the right and left lobes, and (III) features of interlobar vessels. The current surge of 3D imaging analysis shows that the field is growing, with the technology continuing to improve. Future studies using these new and innovative methodologies will continue to refine our understanding of lung anatomy while enhancing our ability to perform safe and effective surgical resections.</p>","PeriodicalId":42086,"journal":{"name":"Video-Assisted Thoracic Surgery","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/74/2c/nihms-1929752.PMC10501054.pdf","citationCount":"0","resultStr":"{\"title\":\"Anatomy of the lung revisited by 3D-CT imaging.\",\"authors\":\"Seshiru Nakazawa, Toshiteru Nagashima, Natsuko Kawatani, Patrick C Gedeon, Ariadne K DeSimone, Hitoshi Igai, Takayuki Kosaka, Ken Shirabe\",\"doi\":\"10.21037/vats-23-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The anatomy of the lung was originally described based on data acquired from cadaveric studies and surgical findings. Over time, computed tomography (CT) and three-dimensional (3D) imaging techniques have been developed, allowing for reconstruction and understanding of lung anatomy in a more intuitive way. The wide adoption of 3D-CT imaging technology has led to a variety of anatomical studies performed not only by anatomists but also by surgeons and radiologists. Such studies have led to new or modified classification systems, shed light on lung anatomy from a useful surgical viewpoint, and enabled us to analyze lung anatomy with a focus on particular anatomical features. 3D images also allow for enhanced pre- and intra-operative simulation, improved surgical safety, enhanced educational utility, and the capacity to perform large-scale anatomical studies in shorter time frames. We will review here the key features of 3D-CT imaging of the lung, along with representative anatomical studies regarding (I) general lung anatomy, (II) anatomy of the right and left lobes, and (III) features of interlobar vessels. The current surge of 3D imaging analysis shows that the field is growing, with the technology continuing to improve. Future studies using these new and innovative methodologies will continue to refine our understanding of lung anatomy while enhancing our ability to perform safe and effective surgical resections.</p>\",\"PeriodicalId\":42086,\"journal\":{\"name\":\"Video-Assisted Thoracic Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/74/2c/nihms-1929752.PMC10501054.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Video-Assisted Thoracic Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/vats-23-21\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Video-Assisted Thoracic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/vats-23-21","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
The anatomy of the lung was originally described based on data acquired from cadaveric studies and surgical findings. Over time, computed tomography (CT) and three-dimensional (3D) imaging techniques have been developed, allowing for reconstruction and understanding of lung anatomy in a more intuitive way. The wide adoption of 3D-CT imaging technology has led to a variety of anatomical studies performed not only by anatomists but also by surgeons and radiologists. Such studies have led to new or modified classification systems, shed light on lung anatomy from a useful surgical viewpoint, and enabled us to analyze lung anatomy with a focus on particular anatomical features. 3D images also allow for enhanced pre- and intra-operative simulation, improved surgical safety, enhanced educational utility, and the capacity to perform large-scale anatomical studies in shorter time frames. We will review here the key features of 3D-CT imaging of the lung, along with representative anatomical studies regarding (I) general lung anatomy, (II) anatomy of the right and left lobes, and (III) features of interlobar vessels. The current surge of 3D imaging analysis shows that the field is growing, with the technology continuing to improve. Future studies using these new and innovative methodologies will continue to refine our understanding of lung anatomy while enhancing our ability to perform safe and effective surgical resections.