Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein
{"title":"具有连续可控光谱分辨率的多模态单分子显微镜。","authors":"Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein","doi":"10.1016/j.bpr.2021.100013","DOIUrl":null,"url":null,"abstract":"<p><p>Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 1","pages":"100013"},"PeriodicalIF":2.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/1c/main.PMC9680784.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal single-molecule microscopy with continuously controlled spectral resolution.\",\"authors\":\"Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein\",\"doi\":\"10.1016/j.bpr.2021.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\"1 1\",\"pages\":\"100013\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/1c/main.PMC9680784.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2021.100013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2021.100013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/8 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Multimodal single-molecule microscopy with continuously controlled spectral resolution.
Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.