具有连续可控光谱分辨率的多模态单分子显微镜。

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2021-08-06 eCollection Date: 2021-09-08 DOI:10.1016/j.bpr.2021.100013
Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein
{"title":"具有连续可控光谱分辨率的多模态单分子显微镜。","authors":"Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein","doi":"10.1016/j.bpr.2021.100013","DOIUrl":null,"url":null,"abstract":"<p><p>Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 1","pages":"100013"},"PeriodicalIF":2.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/1c/main.PMC9680784.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal single-molecule microscopy with continuously controlled spectral resolution.\",\"authors\":\"Jonathan Jeffet, Ariel Ionescu, Yael Michaeli, Dmitry Torchinsky, Eran Perlson, Timothy D Craggs, Yuval Ebenstein\",\"doi\":\"10.1016/j.bpr.2021.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\"1 1\",\"pages\":\"100013\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/1c/main.PMC9680784.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2021.100013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2021.100013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/8 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

颜色是荧光显微镜的基本对比机制,为众多成像和光谱技术提供了基础。光谱成像方案将颜色编码为固定的空间强度分布,在此基础上,我们引入了连续可控光谱分辨率(CoCoS)显微镜,允许实时调整系统的光谱分辨率。通过优化每次实验的光谱分辨率,我们实现了最高的灵敏度和吞吐量,可以单帧采集多个彩色通道,具有单分子灵敏度,视场比以前的超分辨率光谱成像技术大 140 倍。在这里,我们利用一系列样品和 12 种不同的荧光标记物,展示了 CoCoS 在三种实验形式中的实用性:单分子光谱、单分子佛斯特共振能量转移和活体神经元中的多色单粒子跟踪。只需一个简单的附加组件,CoCoS 就能集成到现有的荧光显微镜中,使更广泛的科学界也能使用光谱成像技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multimodal single-molecule microscopy with continuously controlled spectral resolution.

Multimodal single-molecule microscopy with continuously controlled spectral resolution.

Multimodal single-molecule microscopy with continuously controlled spectral resolution.

Multimodal single-molecule microscopy with continuously controlled spectral resolution.

Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信