{"title":"基于ML的心脏相关疾病分类特征选择的元启发式优化算法的比较分析。","authors":"Şevket Ay, Ekin Ekinci, Zeynep Garip","doi":"10.1007/s11227-023-05132-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 11","pages":"11797-11826"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983547/pdf/","citationCount":"2","resultStr":"{\"title\":\"A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases.\",\"authors\":\"Şevket Ay, Ekin Ekinci, Zeynep Garip\",\"doi\":\"10.1007/s11227-023-05132-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"79 11\",\"pages\":\"11797-11826\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983547/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-023-05132-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05132-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases.
This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.