{"title":"利用强大的异体树突状细胞系开发基于新抗原的癌症疫苗。","authors":"Dalil Hannani, Estelle Leplus, Karine Laulagnier, Laurence Chaperot, Joël Plumas","doi":"10.18632/genesandcancer.229","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"14 ","pages":"3-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886307/pdf/","citationCount":"1","resultStr":"{\"title\":\"Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines.\",\"authors\":\"Dalil Hannani, Estelle Leplus, Karine Laulagnier, Laurence Chaperot, Joël Plumas\",\"doi\":\"10.18632/genesandcancer.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.</p>\",\"PeriodicalId\":38987,\"journal\":{\"name\":\"Genes and Cancer\",\"volume\":\"14 \",\"pages\":\"3-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886307/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/genesandcancer.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines.
In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.