{"title":"全基因组方法在鉴定结直肠癌遗传风险相关基因中的互补作用。","authors":"Olfat Ahmad, Asta Försti","doi":"10.1186/s13053-023-00245-5","DOIUrl":null,"url":null,"abstract":"<p><p>The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era in the late 19<sup>th</sup> century, which was followed by a genetic era starting in the late 20<sup>th</sup> century. Genome-wide linkage analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing important roles as well. In this review we aim to provide insights on the complementary roles played by different genomic approaches in allowing the current understanding of the genetic architecture of inherited CRC.</p>","PeriodicalId":55058,"journal":{"name":"Hereditary Cancer in Clinical Practice","volume":"21 1","pages":"1"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883872/pdf/","citationCount":"1","resultStr":"{\"title\":\"The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer.\",\"authors\":\"Olfat Ahmad, Asta Försti\",\"doi\":\"10.1186/s13053-023-00245-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era in the late 19<sup>th</sup> century, which was followed by a genetic era starting in the late 20<sup>th</sup> century. Genome-wide linkage analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing important roles as well. In this review we aim to provide insights on the complementary roles played by different genomic approaches in allowing the current understanding of the genetic architecture of inherited CRC.</p>\",\"PeriodicalId\":55058,\"journal\":{\"name\":\"Hereditary Cancer in Clinical Practice\",\"volume\":\"21 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883872/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditary Cancer in Clinical Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13053-023-00245-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditary Cancer in Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13053-023-00245-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer.
The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era in the late 19th century, which was followed by a genetic era starting in the late 20th century. Genome-wide linkage analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing important roles as well. In this review we aim to provide insights on the complementary roles played by different genomic approaches in allowing the current understanding of the genetic architecture of inherited CRC.
期刊介绍:
Hereditary Cancer in Clinical Practice is an open access journal that publishes articles of interest for the cancer genetics community and serves as a discussion forum for the development appropriate healthcare strategies.
Cancer genetics encompasses a wide variety of disciplines and knowledge in the field is rapidly growing, especially as the amount of information linking genetic differences to inherited cancer predispositions continues expanding. With the increased knowledge of genetic variability and how this relates to cancer risk there is a growing demand not only to disseminate this information into clinical practice but also to enable competent debate concerning how such information is managed and what it implies for patient care.
Topics covered by the journal include but are not limited to:
Original research articles on any aspect of inherited predispositions to cancer.
Reviews of inherited cancer predispositions.
Application of molecular and cytogenetic analysis to clinical decision making.
Clinical aspects of the management of hereditary cancers.
Genetic counselling issues associated with cancer genetics.
The role of registries in improving health care of patients with an inherited predisposition to cancer.