片段性非整倍体热点在基因组一致性的再分析中确定。

IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY
Keelee J McCarty, Mary E Haywood, Rachel Lee, Lauren Henry, Alison Arnold, Susanna McReynolds, Blair McCallie, Bill Schoolcraft, Mandy Katz-Jaffe
{"title":"片段性非整倍体热点在基因组一致性的再分析中确定。","authors":"Keelee J McCarty,&nbsp;Mary E Haywood,&nbsp;Rachel Lee,&nbsp;Lauren Henry,&nbsp;Alison Arnold,&nbsp;Susanna McReynolds,&nbsp;Blair McCallie,&nbsp;Bill Schoolcraft,&nbsp;Mandy Katz-Jaffe","doi":"10.1093/molehr/gaac040","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to characterize a large set of full segmental aneuploidies identified in trophectoderm (TE) biopsies and evaluate concordance in human blastocysts. Full segmental aneuploid errors were identified in TE biopsies (n = 2766) from preimplantation genetic testing for aneuploid (PGT-A) cycles. Full segmental deletions (n = 1872; 66.1%) presented twice as many times as duplications (n = 939; 33.9%), mapped more often to the q-arm (n = 1696; 61.3%) than the p-arm (n = 847; 31.0%) or both arms (n = 223; 8.1%; P < 0.05), and were eight times more likely to include the distal end of a chromosome than not (P < 0.05). Additionally, 37 recurring coordinates (each ≥ 10 events) were discovered across 17 different chromosomes, which were also significantly enriched for distal regions (P = 4.1 × 10-56). Blinded concordance analysis of 162 dissected blastocysts validated the original TE PGT-A full segmental result for a concordance of 96.3% (n = 156); remaining dissected blastocysts were identified as mosaic (n = 6; 3.7%). Origin of aneuploid analysis revealed full segmental aneuploid errors were mostly paternally derived (67%) in contrast to whole chromosome aneuploid errors (5.8% paternally derived). Errors from both parental gametes were observed in 6.5% of aneuploid embryos when multiple whole chromosomes were affected. The average number of recombination events was significantly less in paternally derived (1.81) compared to maternally derived (3.81) segmental aneuploidies (P < 0.0001). In summary, full segmental aneuploidies were identified at hotspots across the genome and were highly concordant upon blinded analysis. Nevertheless, future studies assessing the reproductive potential of full (non-mosaic) segmental aneuploid embryos are critical to rule out potential harmful reproductive risks.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmental aneuploid hotspots identified across the genome concordant on reanalysis.\",\"authors\":\"Keelee J McCarty,&nbsp;Mary E Haywood,&nbsp;Rachel Lee,&nbsp;Lauren Henry,&nbsp;Alison Arnold,&nbsp;Susanna McReynolds,&nbsp;Blair McCallie,&nbsp;Bill Schoolcraft,&nbsp;Mandy Katz-Jaffe\",\"doi\":\"10.1093/molehr/gaac040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to characterize a large set of full segmental aneuploidies identified in trophectoderm (TE) biopsies and evaluate concordance in human blastocysts. Full segmental aneuploid errors were identified in TE biopsies (n = 2766) from preimplantation genetic testing for aneuploid (PGT-A) cycles. Full segmental deletions (n = 1872; 66.1%) presented twice as many times as duplications (n = 939; 33.9%), mapped more often to the q-arm (n = 1696; 61.3%) than the p-arm (n = 847; 31.0%) or both arms (n = 223; 8.1%; P < 0.05), and were eight times more likely to include the distal end of a chromosome than not (P < 0.05). Additionally, 37 recurring coordinates (each ≥ 10 events) were discovered across 17 different chromosomes, which were also significantly enriched for distal regions (P = 4.1 × 10-56). Blinded concordance analysis of 162 dissected blastocysts validated the original TE PGT-A full segmental result for a concordance of 96.3% (n = 156); remaining dissected blastocysts were identified as mosaic (n = 6; 3.7%). Origin of aneuploid analysis revealed full segmental aneuploid errors were mostly paternally derived (67%) in contrast to whole chromosome aneuploid errors (5.8% paternally derived). Errors from both parental gametes were observed in 6.5% of aneuploid embryos when multiple whole chromosomes were affected. The average number of recombination events was significantly less in paternally derived (1.81) compared to maternally derived (3.81) segmental aneuploidies (P < 0.0001). In summary, full segmental aneuploidies were identified at hotspots across the genome and were highly concordant upon blinded analysis. Nevertheless, future studies assessing the reproductive potential of full (non-mosaic) segmental aneuploid embryos are critical to rule out potential harmful reproductive risks.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaac040\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaac040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是表征在滋养外胚层(TE)活组织检查中发现的大量全节段非整倍体,并评估人类囊胚的一致性。通过植入前非整倍体(PGT-A)周期基因检测,在TE活检中发现了完整的非整倍体错误(n = 2766)。全段删除(n = 1872;66.1%)出现重复次数是重复次数的两倍(n = 939;33.9%),更常映射到q臂(n = 1696;61.3%)高于p组(n = 847;31.0%)或双臂(n = 223;8.1%;P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmental aneuploid hotspots identified across the genome concordant on reanalysis.

The aim of this study was to characterize a large set of full segmental aneuploidies identified in trophectoderm (TE) biopsies and evaluate concordance in human blastocysts. Full segmental aneuploid errors were identified in TE biopsies (n = 2766) from preimplantation genetic testing for aneuploid (PGT-A) cycles. Full segmental deletions (n = 1872; 66.1%) presented twice as many times as duplications (n = 939; 33.9%), mapped more often to the q-arm (n = 1696; 61.3%) than the p-arm (n = 847; 31.0%) or both arms (n = 223; 8.1%; P < 0.05), and were eight times more likely to include the distal end of a chromosome than not (P < 0.05). Additionally, 37 recurring coordinates (each ≥ 10 events) were discovered across 17 different chromosomes, which were also significantly enriched for distal regions (P = 4.1 × 10-56). Blinded concordance analysis of 162 dissected blastocysts validated the original TE PGT-A full segmental result for a concordance of 96.3% (n = 156); remaining dissected blastocysts were identified as mosaic (n = 6; 3.7%). Origin of aneuploid analysis revealed full segmental aneuploid errors were mostly paternally derived (67%) in contrast to whole chromosome aneuploid errors (5.8% paternally derived). Errors from both parental gametes were observed in 6.5% of aneuploid embryos when multiple whole chromosomes were affected. The average number of recombination events was significantly less in paternally derived (1.81) compared to maternally derived (3.81) segmental aneuploidies (P < 0.0001). In summary, full segmental aneuploidies were identified at hotspots across the genome and were highly concordant upon blinded analysis. Nevertheless, future studies assessing the reproductive potential of full (non-mosaic) segmental aneuploid embryos are critical to rule out potential harmful reproductive risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信