David E. Hacker, Nicolas A. Abrigo, Jan Hoinka, Stacie L. Richardson, Teresa M. Przytycka, Matthew C. T. Hartman*
{"title":"使用mRNA显示的线性、单环和双环文库的直接、竞争性比较","authors":"David E. Hacker, Nicolas A. Abrigo, Jan Hoinka, Stacie L. Richardson, Teresa M. Przytycka, Matthew C. T. Hartman*","doi":"10.1021/acscombsci.0c00016","DOIUrl":null,"url":null,"abstract":"<p >Peptide macrocyclization is typically associated with the development of higher affinity and more protease stable protein ligands, and, as such, is an important tool in peptide drug discovery. Yet, within the context of a diverse library, does cyclization give inherent advantages over linear peptides? Here, we used mRNA display to create a peptide library of diverse ring sizes and?topologies (monocyclic, bicyclic, and linear). Several rounds of in vitro selection against streptavidin were performed and the winning peptide sequences were analyzed for their binding affinities and overall topologies. The effect of adding a protease challenge on the enrichment of various peptides was also investigated. Taken together, the selection output yields insights about the relative abundance of binders of various topologies within a structurally diverse library.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00016","citationCount":"10","resultStr":"{\"title\":\"Direct, Competitive Comparison of Linear, Monocyclic, and Bicyclic Libraries Using mRNA Display\",\"authors\":\"David E. Hacker, Nicolas A. Abrigo, Jan Hoinka, Stacie L. Richardson, Teresa M. Przytycka, Matthew C. T. Hartman*\",\"doi\":\"10.1021/acscombsci.0c00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peptide macrocyclization is typically associated with the development of higher affinity and more protease stable protein ligands, and, as such, is an important tool in peptide drug discovery. Yet, within the context of a diverse library, does cyclization give inherent advantages over linear peptides? Here, we used mRNA display to create a peptide library of diverse ring sizes and?topologies (monocyclic, bicyclic, and linear). Several rounds of in vitro selection against streptavidin were performed and the winning peptide sequences were analyzed for their binding affinities and overall topologies. The effect of adding a protease challenge on the enrichment of various peptides was also investigated. Taken together, the selection output yields insights about the relative abundance of binders of various topologies within a structurally diverse library.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.0c00016\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.0c00016\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Direct, Competitive Comparison of Linear, Monocyclic, and Bicyclic Libraries Using mRNA Display
Peptide macrocyclization is typically associated with the development of higher affinity and more protease stable protein ligands, and, as such, is an important tool in peptide drug discovery. Yet, within the context of a diverse library, does cyclization give inherent advantages over linear peptides? Here, we used mRNA display to create a peptide library of diverse ring sizes and?topologies (monocyclic, bicyclic, and linear). Several rounds of in vitro selection against streptavidin were performed and the winning peptide sequences were analyzed for their binding affinities and overall topologies. The effect of adding a protease challenge on the enrichment of various peptides was also investigated. Taken together, the selection output yields insights about the relative abundance of binders of various topologies within a structurally diverse library.