高维度典型相关分析的显著性检验。

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-12-01 Epub Date: 2022-11-18 DOI:10.1093/biomet/asab059
Ian W McKeague, Xin Zhang
{"title":"高维度典型相关分析的显著性检验。","authors":"Ian W McKeague, Xin Zhang","doi":"10.1093/biomet/asab059","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of testing for the presence of linear relationships between large sets of random variables based on a post-selection inference approach to canonical correlation analysis. The challenge is to adjust for the selection of subsets of variables having linear combinations with maximal sample correlation. To this end, we construct a stabilized one-step estimator of the euclidean-norm of the canonical correlations maximized over subsets of variables of pre-specified cardinality. This estimator is shown to be consistent for its target parameter and asymptotically normal, provided the dimensions of the variables do not grow too quickly with sample size. We also develop a greedy search algorithm to accurately compute the estimator, leading to a computationally tractable omnibus test for the global null hypothesis that there are no linear relationships between any subsets of variables having the pre-specified cardinality. We further develop a confidence interval that takes the variable selection into account.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"109 4","pages":"1067-1083"},"PeriodicalIF":2.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857302/pdf/nihms-1771870.pdf","citationCount":"0","resultStr":"{\"title\":\"Significance testing for canonical correlation analysis in high dimensions.\",\"authors\":\"Ian W McKeague, Xin Zhang\",\"doi\":\"10.1093/biomet/asab059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the problem of testing for the presence of linear relationships between large sets of random variables based on a post-selection inference approach to canonical correlation analysis. The challenge is to adjust for the selection of subsets of variables having linear combinations with maximal sample correlation. To this end, we construct a stabilized one-step estimator of the euclidean-norm of the canonical correlations maximized over subsets of variables of pre-specified cardinality. This estimator is shown to be consistent for its target parameter and asymptotically normal, provided the dimensions of the variables do not grow too quickly with sample size. We also develop a greedy search algorithm to accurately compute the estimator, leading to a computationally tractable omnibus test for the global null hypothesis that there are no linear relationships between any subsets of variables having the pre-specified cardinality. We further develop a confidence interval that takes the variable selection into account.</p>\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"109 4\",\"pages\":\"1067-1083\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857302/pdf/nihms-1771870.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asab059\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asab059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们根据典型相关分析的后选推理方法,考虑了检验大量随机变量集之间是否存在线性关系的问题。我们面临的挑战是,如何调整具有最大样本相关性线性组合的变量子集的选择。为此,我们构建了一个稳定的一步估计器,用于估计在预先指定的心数变量子集上最大化的典型相关性的欧几里德正态。结果表明,只要变量的维数不随着样本量的增加而过快增长,这个估计器对其目标参数是一致的,而且渐近正态。我们还开发了一种贪婪搜索算法来精确计算该估计器,从而得到一个计算简单的全局零假设综合测试,即任何具有预先指定的万有引力的变量子集之间不存在线性关系。我们进一步开发了一个置信区间,将变量选择考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance testing for canonical correlation analysis in high dimensions.

We consider the problem of testing for the presence of linear relationships between large sets of random variables based on a post-selection inference approach to canonical correlation analysis. The challenge is to adjust for the selection of subsets of variables having linear combinations with maximal sample correlation. To this end, we construct a stabilized one-step estimator of the euclidean-norm of the canonical correlations maximized over subsets of variables of pre-specified cardinality. This estimator is shown to be consistent for its target parameter and asymptotically normal, provided the dimensions of the variables do not grow too quickly with sample size. We also develop a greedy search algorithm to accurately compute the estimator, leading to a computationally tractable omnibus test for the global null hypothesis that there are no linear relationships between any subsets of variables having the pre-specified cardinality. We further develop a confidence interval that takes the variable selection into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信