具有单一形态源的周期性空间图案。

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sheng Wang, Jordi Garcia-Ojalvo, Michael B Elowitz
{"title":"具有单一形态源的周期性空间图案。","authors":"Sheng Wang,&nbsp;Jordi Garcia-Ojalvo,&nbsp;Michael B Elowitz","doi":"10.1016/j.cels.2022.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"13 12","pages":"1033-1047.e7"},"PeriodicalIF":9.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic spatial patterning with a single morphogen.\",\"authors\":\"Sheng Wang,&nbsp;Jordi Garcia-Ojalvo,&nbsp;Michael B Elowitz\",\"doi\":\"10.1016/j.cels.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"13 12\",\"pages\":\"1033-1047.e7\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2022.11.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.11.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在多细胞发育过程中,周期性的空间模式系统产生重复的结构,如手指、椎骨和牙齿。图灵模式为理解这类系统提供了一个基本范例。最简单的图灵系统被认为至少需要两个形态原来产生周期图案。在这里,使用数学模型,我们证明了一个更简单的电路,只包括一个扩散形态,足以产生远程的,空间周期性图案,从瞬态初始扰动向外传播,并在扰动消除后保持稳定。此外,一个额外的双稳态细胞内反馈或在生长的细胞晶格上的操作可以使图案对噪声具有鲁棒性。综上所述,这些结果表明,单一形态因子足以形成强大的空间模式,并为合成发育生物学新兴领域的工程模式形成提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic spatial patterning with a single morphogen.

During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信