ALOHA:聚合局部极值样条用于高通量剂量反应分析

IF 3.1 Q2 TOXICOLOGY
Sarah E. Davidson , Matthew W. Wheeler , Scott S. Auerbach , Siva Sivaganesan , Mario Medvedovic
{"title":"ALOHA:聚合局部极值样条用于高通量剂量反应分析","authors":"Sarah E. Davidson ,&nbsp;Matthew W. Wheeler ,&nbsp;Scott S. Auerbach ,&nbsp;Siva Sivaganesan ,&nbsp;Mario Medvedovic","doi":"10.1016/j.comtox.2021.100196","DOIUrl":null,"url":null,"abstract":"<div><p><span>Computational methods for genomic dose–response integrate dose–response modeling with bioinformatics tools to evaluate changes in molecular and cellular functions related to pathogenic processes. These methods use parametric models to describe each gene’s dose–response, but such models may not adequately capture expression changes. Additionally, current approaches do not consider gene co-expression networks. When assessing co-expression networks, one typically does not consider the dose–response relationship, resulting in ‘co-regulated’ gene sets containing genes having different dose–response patterns. To avoid these limitations, we develop an analysis pipeline called Aggregated Local Extrema Splines for High-throughput Analysis (ALOHA), which computes individual genomic dose–response functions using a flexible class </span>Bayesian<span> shape constrained splines and clusters gene co-regulation based upon these fits. Using splines, we reduce information loss due to parametric lack-of-fit issues, and because we cluster on dose–response relationships, we better identify co-regulation clusters for genes that have co-expressed dose–response patterns from chemical exposure. The clustered pathways can then be used to estimate a dose associated with a pre-specified biological response, i.e., the benchmark dose (BMD), and approximate a point of departure dose corresponding to minimal adverse response in the whole tissue/organism. We compare our approach to current parametric methods and our biologically enriched gene sets to cluster on normalized expression data. Using this methodology, we can more effectively extract the underlying structure leading to more cohesive estimates of gene set potency.</span></p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"21 ","pages":"Article 100196"},"PeriodicalIF":3.1000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALOHA: Aggregated local extrema splines for high-throughput dose–response analysis\",\"authors\":\"Sarah E. Davidson ,&nbsp;Matthew W. Wheeler ,&nbsp;Scott S. Auerbach ,&nbsp;Siva Sivaganesan ,&nbsp;Mario Medvedovic\",\"doi\":\"10.1016/j.comtox.2021.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Computational methods for genomic dose–response integrate dose–response modeling with bioinformatics tools to evaluate changes in molecular and cellular functions related to pathogenic processes. These methods use parametric models to describe each gene’s dose–response, but such models may not adequately capture expression changes. Additionally, current approaches do not consider gene co-expression networks. When assessing co-expression networks, one typically does not consider the dose–response relationship, resulting in ‘co-regulated’ gene sets containing genes having different dose–response patterns. To avoid these limitations, we develop an analysis pipeline called Aggregated Local Extrema Splines for High-throughput Analysis (ALOHA), which computes individual genomic dose–response functions using a flexible class </span>Bayesian<span> shape constrained splines and clusters gene co-regulation based upon these fits. Using splines, we reduce information loss due to parametric lack-of-fit issues, and because we cluster on dose–response relationships, we better identify co-regulation clusters for genes that have co-expressed dose–response patterns from chemical exposure. The clustered pathways can then be used to estimate a dose associated with a pre-specified biological response, i.e., the benchmark dose (BMD), and approximate a point of departure dose corresponding to minimal adverse response in the whole tissue/organism. We compare our approach to current parametric methods and our biologically enriched gene sets to cluster on normalized expression data. Using this methodology, we can more effectively extract the underlying structure leading to more cohesive estimates of gene set potency.</span></p></div>\",\"PeriodicalId\":37651,\"journal\":{\"name\":\"Computational Toxicology\",\"volume\":\"21 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468111321000426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111321000426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组剂量-反应计算方法将剂量-反应建模与生物信息学工具相结合,以评估与致病过程相关的分子和细胞功能的变化。这些方法使用参数模型来描述每个基因的剂量反应,但这种模型可能不能充分捕捉表达变化。此外,目前的方法没有考虑基因共表达网络。在评估共表达网络时,通常不考虑剂量-反应关系,导致“共调节”基因集包含具有不同剂量-反应模式的基因。为了避免这些限制,我们开发了一种称为聚合局部极值样条用于高通量分析(ALOHA)的分析管道,它使用基于这些拟合的灵活类贝叶斯形状约束样条和聚类基因共调控来计算个体基因组剂量响应函数。使用样条,我们减少了由于参数缺乏拟合问题而导致的信息损失,并且由于我们对剂量-反应关系进行了聚类,我们更好地识别了化学暴露中共同表达剂量-反应模式的基因的共调节聚类。然后,聚类途径可用于估计与预先指定的生物反应相关的剂量,即基准剂量(BMD),并近似对应于整个组织/生物体中最小不良反应的起始剂量点。我们将我们的方法与当前的参数方法和我们的生物富集基因集进行比较,以聚类标准化表达数据。使用这种方法,我们可以更有效地提取潜在的结构,从而更有凝聚力地估计基因集的效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ALOHA: Aggregated local extrema splines for high-throughput dose–response analysis

ALOHA: Aggregated local extrema splines for high-throughput dose–response analysis

ALOHA: Aggregated local extrema splines for high-throughput dose–response analysis

Computational methods for genomic dose–response integrate dose–response modeling with bioinformatics tools to evaluate changes in molecular and cellular functions related to pathogenic processes. These methods use parametric models to describe each gene’s dose–response, but such models may not adequately capture expression changes. Additionally, current approaches do not consider gene co-expression networks. When assessing co-expression networks, one typically does not consider the dose–response relationship, resulting in ‘co-regulated’ gene sets containing genes having different dose–response patterns. To avoid these limitations, we develop an analysis pipeline called Aggregated Local Extrema Splines for High-throughput Analysis (ALOHA), which computes individual genomic dose–response functions using a flexible class Bayesian shape constrained splines and clusters gene co-regulation based upon these fits. Using splines, we reduce information loss due to parametric lack-of-fit issues, and because we cluster on dose–response relationships, we better identify co-regulation clusters for genes that have co-expressed dose–response patterns from chemical exposure. The clustered pathways can then be used to estimate a dose associated with a pre-specified biological response, i.e., the benchmark dose (BMD), and approximate a point of departure dose corresponding to minimal adverse response in the whole tissue/organism. We compare our approach to current parametric methods and our biologically enriched gene sets to cluster on normalized expression data. Using this methodology, we can more effectively extract the underlying structure leading to more cohesive estimates of gene set potency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信