{"title":"Siah2 抑制剂和代谢拮抗剂 Oxamate 可延缓结肠癌的进展并下调 PD1 的表达。","authors":"Sherin Zakaria, Samar Elsebaey, Shady Allam, Walied Abdo, Alaa El-Sisi","doi":"10.2174/1574892818666230116142606","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer.</p><p><strong>Objectives: </strong>We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer.</p><p><strong>Methods: </strong>Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry.</p><p><strong>Results: </strong>The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone.</p><p><strong>Conclusion: </strong>Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Siah2 inhibitor and the metabolic antagonist Oxamate retard colon cancer progression and downregulate PD1 expression.\",\"authors\":\"Sherin Zakaria, Samar Elsebaey, Shady Allam, Walied Abdo, Alaa El-Sisi\",\"doi\":\"10.2174/1574892818666230116142606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer.</p><p><strong>Objectives: </strong>We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer.</p><p><strong>Methods: </strong>Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry.</p><p><strong>Results: </strong>The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone.</p><p><strong>Conclusion: </strong>Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].</p>\",\"PeriodicalId\":20774,\"journal\":{\"name\":\"Recent patents on anti-cancer drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-cancer drug discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1574892818666230116142606\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574892818666230116142606","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Siah2 inhibitor and the metabolic antagonist Oxamate retard colon cancer progression and downregulate PD1 expression.
Background: Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer.
Objectives: We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer.
Methods: Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry.
Results: The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone.
Conclusion: Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].
期刊介绍:
Aims & Scope
Recent Patents on Anti-Cancer Drug Discovery publishes review and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of anti-cancer drug discovery e.g. on novel bioactive compounds, analogs, targets & predictive biomarkers & drug efficacy biomarkers. The journal also publishes book reviews of eBooks and books on anti-cancer drug discovery. A selection of important and recent patents on anti-cancer drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-cancer drug design and discovery. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to anti-cancer drug discovery.