Subu K Subramanian, William P Russ, Rama Ranganathan
{"title":"一组经过实验验证的、相互正交的引物,用于组合指定遗传成分。","authors":"Subu K Subramanian, William P Russ, Rama Ranganathan","doi":"10.1093/synbio/ysx008","DOIUrl":null,"url":null,"abstract":"<p><p>The design and synthesis of novel genes and deoxyribonucleic acid (DNA) sequences is a central technique in synthetic biology. Current methods of high throughput gene synthesis use pooled oligonucleotides obtained from custom-designed DNA microarray chips, and rely on orthogonal (non-interacting) polymerase chain reaction primers to specifically de-multiplex, by amplification, the precise subset of oligonucleotides necessary to assemble a full length gene. The availability of a large validated set of mutually orthogonal primers is therefore a crucial reagent for high-throughput gene synthesis. Here, we present a set of 166 20-nucleotide primers that are experimentally verified to be non-interacting, capable of specifying 13 695 unique genes. These primers represent a valuable resource to the synthetic biology community for specifying genetic components that can be assembled through a scalable and modular architecture.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"3 1","pages":"ysx008"},"PeriodicalIF":2.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysx008","citationCount":"2","resultStr":"{\"title\":\"A set of experimentally validated, mutually orthogonal primers for combinatorially specifying genetic components.\",\"authors\":\"Subu K Subramanian, William P Russ, Rama Ranganathan\",\"doi\":\"10.1093/synbio/ysx008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The design and synthesis of novel genes and deoxyribonucleic acid (DNA) sequences is a central technique in synthetic biology. Current methods of high throughput gene synthesis use pooled oligonucleotides obtained from custom-designed DNA microarray chips, and rely on orthogonal (non-interacting) polymerase chain reaction primers to specifically de-multiplex, by amplification, the precise subset of oligonucleotides necessary to assemble a full length gene. The availability of a large validated set of mutually orthogonal primers is therefore a crucial reagent for high-throughput gene synthesis. Here, we present a set of 166 20-nucleotide primers that are experimentally verified to be non-interacting, capable of specifying 13 695 unique genes. These primers represent a valuable resource to the synthetic biology community for specifying genetic components that can be assembled through a scalable and modular architecture.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"3 1\",\"pages\":\"ysx008\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/synbio/ysx008\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysx008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysx008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A set of experimentally validated, mutually orthogonal primers for combinatorially specifying genetic components.
The design and synthesis of novel genes and deoxyribonucleic acid (DNA) sequences is a central technique in synthetic biology. Current methods of high throughput gene synthesis use pooled oligonucleotides obtained from custom-designed DNA microarray chips, and rely on orthogonal (non-interacting) polymerase chain reaction primers to specifically de-multiplex, by amplification, the precise subset of oligonucleotides necessary to assemble a full length gene. The availability of a large validated set of mutually orthogonal primers is therefore a crucial reagent for high-throughput gene synthesis. Here, we present a set of 166 20-nucleotide primers that are experimentally verified to be non-interacting, capable of specifying 13 695 unique genes. These primers represent a valuable resource to the synthetic biology community for specifying genetic components that can be assembled through a scalable and modular architecture.