{"title":"白细胞介素-38 和胰岛素抵抗。","authors":"Kamil Klejbuk, Marek Strączkowski","doi":"10.2174/1871530323666230911114150","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin resistance, i.e., decreased biological response to insulin, is a risk factor for many diseases, such as obesity, type 2 diabetes (T2DM), cardiovascular disease, polycystic ovary syndrome, some forms of cancer and neurodegenerative diseases. One of its main causes is chronic low-grade inflammation, mediated by the proinflammatory pathways, such as the c-Jun N-terminal kinase (JNK) pathway and the nuclear factor kappa B (NFκB) pathway. Interleukin (IL)-38 (IL-38) is a newly discovered cytokine that belongs to the IL-1 family. There are three hypothetical pathways through which IL-38 may bind to the specific receptors and inhibit their proinflammatory activity. Those pathways are associated with IL-36 receptor (IL-36R), IL-1 receptor accessory protein-like 1 (IL1RAPL1) and IL-1 receptor 1 (IL1R1). There are studies linking IL-38 to improve insulin sensitivity through the difference in serum IL-38 in patients with insulin resistance or the correlation of IL-38 concentrations with insulin resistance indexes. However, many questions still remain regarding the biological activity of IL-38 itself and its role in the pathogenesis of insulin resistance. The goal of this study is to showcase IL-38, its biological activity, hypothesized signaling pathways, connection with insulin resistance and future perspectives of research on IL-38. We present that IL-38 associated signaling can be a potential target for the treatment of insulin resistance and associated diseases.</p>","PeriodicalId":11614,"journal":{"name":"Endocrine, metabolic & immune disorders drug targets","volume":" ","pages":"611-616"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interleukin-38 and Insulin Resistance.\",\"authors\":\"Kamil Klejbuk, Marek Strączkowski\",\"doi\":\"10.2174/1871530323666230911114150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin resistance, i.e., decreased biological response to insulin, is a risk factor for many diseases, such as obesity, type 2 diabetes (T2DM), cardiovascular disease, polycystic ovary syndrome, some forms of cancer and neurodegenerative diseases. One of its main causes is chronic low-grade inflammation, mediated by the proinflammatory pathways, such as the c-Jun N-terminal kinase (JNK) pathway and the nuclear factor kappa B (NFκB) pathway. Interleukin (IL)-38 (IL-38) is a newly discovered cytokine that belongs to the IL-1 family. There are three hypothetical pathways through which IL-38 may bind to the specific receptors and inhibit their proinflammatory activity. Those pathways are associated with IL-36 receptor (IL-36R), IL-1 receptor accessory protein-like 1 (IL1RAPL1) and IL-1 receptor 1 (IL1R1). There are studies linking IL-38 to improve insulin sensitivity through the difference in serum IL-38 in patients with insulin resistance or the correlation of IL-38 concentrations with insulin resistance indexes. However, many questions still remain regarding the biological activity of IL-38 itself and its role in the pathogenesis of insulin resistance. The goal of this study is to showcase IL-38, its biological activity, hypothesized signaling pathways, connection with insulin resistance and future perspectives of research on IL-38. We present that IL-38 associated signaling can be a potential target for the treatment of insulin resistance and associated diseases.</p>\",\"PeriodicalId\":11614,\"journal\":{\"name\":\"Endocrine, metabolic & immune disorders drug targets\",\"volume\":\" \",\"pages\":\"611-616\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine, metabolic & immune disorders drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1871530323666230911114150\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine, metabolic & immune disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871530323666230911114150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Insulin resistance, i.e., decreased biological response to insulin, is a risk factor for many diseases, such as obesity, type 2 diabetes (T2DM), cardiovascular disease, polycystic ovary syndrome, some forms of cancer and neurodegenerative diseases. One of its main causes is chronic low-grade inflammation, mediated by the proinflammatory pathways, such as the c-Jun N-terminal kinase (JNK) pathway and the nuclear factor kappa B (NFκB) pathway. Interleukin (IL)-38 (IL-38) is a newly discovered cytokine that belongs to the IL-1 family. There are three hypothetical pathways through which IL-38 may bind to the specific receptors and inhibit their proinflammatory activity. Those pathways are associated with IL-36 receptor (IL-36R), IL-1 receptor accessory protein-like 1 (IL1RAPL1) and IL-1 receptor 1 (IL1R1). There are studies linking IL-38 to improve insulin sensitivity through the difference in serum IL-38 in patients with insulin resistance or the correlation of IL-38 concentrations with insulin resistance indexes. However, many questions still remain regarding the biological activity of IL-38 itself and its role in the pathogenesis of insulin resistance. The goal of this study is to showcase IL-38, its biological activity, hypothesized signaling pathways, connection with insulin resistance and future perspectives of research on IL-38. We present that IL-38 associated signaling can be a potential target for the treatment of insulin resistance and associated diseases.
期刊介绍:
Aims & Scope
This journal is devoted to timely reviews and original articles of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Moreover, the topics related to effects of food components and/or nutraceuticals on the endocrine-metabolic-immune axis and on microbioma composition are welcome.