通过样本外预测误差估算探索性因子分析中的因子数量。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2024-02-01 Epub Date: 2022-11-03 DOI:10.1037/met0000528
Jonas M B Haslbeck, Riet van Bork
{"title":"通过样本外预测误差估算探索性因子分析中的因子数量。","authors":"Jonas M B Haslbeck, Riet van Bork","doi":"10.1037/met0000528","DOIUrl":null,"url":null,"abstract":"<p><p>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package <i>fspe</i>. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"48-64"},"PeriodicalIF":7.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the number of factors in exploratory factor analysis via out-of-sample prediction errors.\",\"authors\":\"Jonas M B Haslbeck, Riet van Bork\",\"doi\":\"10.1037/met0000528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package <i>fspe</i>. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"48-64\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000528\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000528","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索性因子分析(EFA)是心理科学中最流行的统计模型之一。EFA 的一个关键问题是估计因子的数量。在本文中,我们提出了一种基于最小化候选因子模型的样本外预测误差来估计因子数量的新方法。我们通过大量的模拟研究表明,我们的方法略优于现有的方法,包括平行分析法、贝叶斯信息准则(BIC)、阿凯克信息准则(AIC)、近似均方根误差(RMSEA)和探索性图分析法。此外,我们还证明,在性能最好的方法中,我们的方法在不同的真实因子模型规格下都是最稳健的。我们在 R 软件包 fspe 中提供了我们方法的实现。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the number of factors in exploratory factor analysis via out-of-sample prediction errors.

Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信