{"title":"槲皮素在化学生物学模型中通过与靶蛋白和相关基因相互作用来减弱病毒感染。","authors":"Md Atiar Rahman, Fauzia Mahanaz Shorobi, Md Nazim Uddin, Srabonti Saha, Md Amjad Hossain","doi":"10.1007/s40203-022-00132-2","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinally active compounds in the flavonoid class of phytochemicals are being studied for antiviral action against various DNA and RNA viruses. Quercetin is a flavonoid present in a wide range of foods, including fruits and vegetables. It is said to be efficient against a wide range of viruses. This research investigated the usefulness of Quercetin against Hepatitis C virus, Dengue type 2 virus, Ebola virus, and Influenza A using computational models. A molecular docking study using the online tool PockDrug was accomplished to identify the best binding sites between Quercetin and PubChem-based receptors. Network-pharmacological assay to opt to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, Cytoscape plugin cytoHubba. Quercetin explored tremendous binding affinity against NS5A protein for HCV with a docking score of - 6.268 kcal/mol, NS5 for DENV-2 with a docking score of - 5.393 kcal/mol, VP35 protein for EBOV with a docking score of - 4.524 kcal/mol, and NP protein for IAV with a docking score of - 6.954 kcal/mol. In the network-pharmacology study, out of 39 hub genes, 38 genes have been found to interact with Quercetin and the top interconnected nodes in the protein-protein network were (based on the degree of interaction with other nodes) <i>AKT1, EGFR, SRC, MMP9, MMP2, KDR, IGF1R, PTK2, ABCG2,</i> and <i>MET.</i> Negative binding energies were noticed in Quercetin-receptor interaction. Results demonstrate that Quercetin could be a potential antiviral agent against these viral diseases with further study in <i>in-vivo</i> models.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00132-2.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"10 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models.\",\"authors\":\"Md Atiar Rahman, Fauzia Mahanaz Shorobi, Md Nazim Uddin, Srabonti Saha, Md Amjad Hossain\",\"doi\":\"10.1007/s40203-022-00132-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medicinally active compounds in the flavonoid class of phytochemicals are being studied for antiviral action against various DNA and RNA viruses. Quercetin is a flavonoid present in a wide range of foods, including fruits and vegetables. It is said to be efficient against a wide range of viruses. This research investigated the usefulness of Quercetin against Hepatitis C virus, Dengue type 2 virus, Ebola virus, and Influenza A using computational models. A molecular docking study using the online tool PockDrug was accomplished to identify the best binding sites between Quercetin and PubChem-based receptors. Network-pharmacological assay to opt to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, Cytoscape plugin cytoHubba. Quercetin explored tremendous binding affinity against NS5A protein for HCV with a docking score of - 6.268 kcal/mol, NS5 for DENV-2 with a docking score of - 5.393 kcal/mol, VP35 protein for EBOV with a docking score of - 4.524 kcal/mol, and NP protein for IAV with a docking score of - 6.954 kcal/mol. In the network-pharmacology study, out of 39 hub genes, 38 genes have been found to interact with Quercetin and the top interconnected nodes in the protein-protein network were (based on the degree of interaction with other nodes) <i>AKT1, EGFR, SRC, MMP9, MMP2, KDR, IGF1R, PTK2, ABCG2,</i> and <i>MET.</i> Negative binding energies were noticed in Quercetin-receptor interaction. Results demonstrate that Quercetin could be a potential antiviral agent against these viral diseases with further study in <i>in-vivo</i> models.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00132-2.</p>\",\"PeriodicalId\":13380,\"journal\":{\"name\":\"In Silico Pharmacology\",\"volume\":\"10 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-022-00132-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-022-00132-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models.
Medicinally active compounds in the flavonoid class of phytochemicals are being studied for antiviral action against various DNA and RNA viruses. Quercetin is a flavonoid present in a wide range of foods, including fruits and vegetables. It is said to be efficient against a wide range of viruses. This research investigated the usefulness of Quercetin against Hepatitis C virus, Dengue type 2 virus, Ebola virus, and Influenza A using computational models. A molecular docking study using the online tool PockDrug was accomplished to identify the best binding sites between Quercetin and PubChem-based receptors. Network-pharmacological assay to opt to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, Cytoscape plugin cytoHubba. Quercetin explored tremendous binding affinity against NS5A protein for HCV with a docking score of - 6.268 kcal/mol, NS5 for DENV-2 with a docking score of - 5.393 kcal/mol, VP35 protein for EBOV with a docking score of - 4.524 kcal/mol, and NP protein for IAV with a docking score of - 6.954 kcal/mol. In the network-pharmacology study, out of 39 hub genes, 38 genes have been found to interact with Quercetin and the top interconnected nodes in the protein-protein network were (based on the degree of interaction with other nodes) AKT1, EGFR, SRC, MMP9, MMP2, KDR, IGF1R, PTK2, ABCG2, and MET. Negative binding energies were noticed in Quercetin-receptor interaction. Results demonstrate that Quercetin could be a potential antiviral agent against these viral diseases with further study in in-vivo models.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-022-00132-2.