Yue Xu , Xi Bao , Li Chen , Tenghan Zhuang , Yang Xu , Lei Feng
{"title":"PRV在重组ST-Tret1细胞中的高产率和稳定性提高","authors":"Yue Xu , Xi Bao , Li Chen , Tenghan Zhuang , Yang Xu , Lei Feng","doi":"10.1016/j.biologicals.2023.101692","DOIUrl":null,"url":null,"abstract":"<div><p><span>Productivity and stability of Pseudorabies virus<span><span> (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. </span>Trehalose<span> is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from </span></span></span><em>Polypedilum vanderplanki</em><span><span>, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny </span>viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID</span><sub>50</sub><span><span>/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at −20 °C and −70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, </span>tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.</span></p></div>","PeriodicalId":55369,"journal":{"name":"Biologicals","volume":"83 ","pages":"Article 101692"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced productivity and stability of PRV in recombinant ST-Tret1 cells\",\"authors\":\"Yue Xu , Xi Bao , Li Chen , Tenghan Zhuang , Yang Xu , Lei Feng\",\"doi\":\"10.1016/j.biologicals.2023.101692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Productivity and stability of Pseudorabies virus<span><span> (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. </span>Trehalose<span> is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from </span></span></span><em>Polypedilum vanderplanki</em><span><span>, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny </span>viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID</span><sub>50</sub><span><span>/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at −20 °C and −70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, </span>tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.</span></p></div>\",\"PeriodicalId\":55369,\"journal\":{\"name\":\"Biologicals\",\"volume\":\"83 \",\"pages\":\"Article 101692\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologicals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045105623000301\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologicals","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045105623000301","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced productivity and stability of PRV in recombinant ST-Tret1 cells
Productivity and stability of Pseudorabies virus (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. Trehalose is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from Polypedilum vanderplanki, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID50/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at −20 °C and −70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.
期刊介绍:
Biologicals provides a modern and multidisciplinary international forum for news, debate, and original research on all aspects of biologicals used in human and veterinary medicine. The journal publishes original papers, reviews, and letters relevant to the development, production, quality control, and standardization of biological derived from both novel and established biotechnologies. Special issues are produced to reflect topics of particular international interest and concern.Three types of papers are welcome: original research reports, short papers, and review articles. The journal will also publish comments and letters to the editor, book reviews, meeting reports and information on regulatory issues.