基于CAPA-ResUNet的胸部CT图像COVID-19肺部感染分割

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lu Ma, Shuni Song, Liting Guo, Wenjun Tan, Lisheng Xu
{"title":"基于CAPA-ResUNet的胸部CT图像COVID-19肺部感染分割","authors":"Lu Ma,&nbsp;Shuni Song,&nbsp;Liting Guo,&nbsp;Wenjun Tan,&nbsp;Lisheng Xu","doi":"10.1002/ima.22819","DOIUrl":null,"url":null,"abstract":"<p>Coronavirus disease 2019 (COVID-19) epidemic has devastating effects on personal health around the world. It is significant to achieve accurate segmentation of pulmonary infection regions, which is an early indicator of disease. To solve this problem, a deep learning model, namely, the content-aware pre-activated residual UNet (CAPA-ResUNet), was proposed for segmenting COVID-19 lesions from CT slices. In this network, the pre-activated residual block was used for down-sampling to solve the problems of complex foreground and large fluctuations of distribution in datasets during training and to avoid gradient disappearance. The area loss function based on the false segmentation regions was proposed to solve the problem of fuzzy boundary of the lesion area. This model was evaluated by the public dataset (COVID-19 Lung CT Lesion Segmentation Challenge—2020) and compared its performance with those of classical models. Our method gains an advantage over other models in multiple metrics. Such as the Dice coefficient, specificity (Spe), and intersection over union (IoU), our CAPA-ResUNet obtained 0.775 points, 0.972 points, and 0.646 points, respectively. The Dice coefficient of our model was 2.51% higher than Content-aware residual UNet (CARes-UNet). The code is available at https://github.com/malu108/LungInfectionSeg.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 1","pages":"6-17"},"PeriodicalIF":3.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874448/pdf/IMA-33-.pdf","citationCount":"2","resultStr":"{\"title\":\"COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet\",\"authors\":\"Lu Ma,&nbsp;Shuni Song,&nbsp;Liting Guo,&nbsp;Wenjun Tan,&nbsp;Lisheng Xu\",\"doi\":\"10.1002/ima.22819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coronavirus disease 2019 (COVID-19) epidemic has devastating effects on personal health around the world. It is significant to achieve accurate segmentation of pulmonary infection regions, which is an early indicator of disease. To solve this problem, a deep learning model, namely, the content-aware pre-activated residual UNet (CAPA-ResUNet), was proposed for segmenting COVID-19 lesions from CT slices. In this network, the pre-activated residual block was used for down-sampling to solve the problems of complex foreground and large fluctuations of distribution in datasets during training and to avoid gradient disappearance. The area loss function based on the false segmentation regions was proposed to solve the problem of fuzzy boundary of the lesion area. This model was evaluated by the public dataset (COVID-19 Lung CT Lesion Segmentation Challenge—2020) and compared its performance with those of classical models. Our method gains an advantage over other models in multiple metrics. Such as the Dice coefficient, specificity (Spe), and intersection over union (IoU), our CAPA-ResUNet obtained 0.775 points, 0.972 points, and 0.646 points, respectively. The Dice coefficient of our model was 2.51% higher than Content-aware residual UNet (CARes-UNet). The code is available at https://github.com/malu108/LungInfectionSeg.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"33 1\",\"pages\":\"6-17\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874448/pdf/IMA-33-.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22819\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22819","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

2019冠状病毒病(新冠肺炎)疫情对世界各地的个人健康造成了毁灭性影响。实现肺部感染区域的准确分割具有重要意义,这是疾病的早期指标。为了解决这个问题,提出了一种深度学习模型,即内容软件预激活残差UNet(CAPA-ResUNet),用于从CT切片中分割新冠肺炎病变。在该网络中,使用预激活的残差块进行下采样,以解决训练过程中前景复杂和数据集分布波动大的问题,并避免梯度消失。针对病变区域边界模糊的问题,提出了基于伪分割区域的区域损失函数。该模型通过公共数据集(新冠肺炎肺CT病灶分割挑战-2020)进行评估,并将其性能与经典模型的性能进行比较。我们的方法在多个度量方面比其他模型具有优势。如Dice系数、特异性(Spe)和联合交集(IoU),我们的CAPA-ResUNet分别获得0.775分、0.972分和0.646分。我们模型的Dice系数比内容感知残差UNet(CARes UNet)高2.51%。代码可在https://github.com/malu108/LungInfectionSeg.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet

Coronavirus disease 2019 (COVID-19) epidemic has devastating effects on personal health around the world. It is significant to achieve accurate segmentation of pulmonary infection regions, which is an early indicator of disease. To solve this problem, a deep learning model, namely, the content-aware pre-activated residual UNet (CAPA-ResUNet), was proposed for segmenting COVID-19 lesions from CT slices. In this network, the pre-activated residual block was used for down-sampling to solve the problems of complex foreground and large fluctuations of distribution in datasets during training and to avoid gradient disappearance. The area loss function based on the false segmentation regions was proposed to solve the problem of fuzzy boundary of the lesion area. This model was evaluated by the public dataset (COVID-19 Lung CT Lesion Segmentation Challenge—2020) and compared its performance with those of classical models. Our method gains an advantage over other models in multiple metrics. Such as the Dice coefficient, specificity (Spe), and intersection over union (IoU), our CAPA-ResUNet obtained 0.775 points, 0.972 points, and 0.646 points, respectively. The Dice coefficient of our model was 2.51% higher than Content-aware residual UNet (CARes-UNet). The code is available at https://github.com/malu108/LungInfectionSeg.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信