DIET:利用残差信息的边际依赖性测量进行条件独立性检验。

Mukund Sudarshan, Aahlad Puli, Wesley Tansey, Rajesh Ranganath
{"title":"DIET:利用残差信息的边际依赖性测量进行条件独立性检验。","authors":"Mukund Sudarshan, Aahlad Puli, Wesley Tansey, Rajesh Ranganath","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Conditional randomization tests (CRTs) assess whether a variable <math><mi>x</mi></math> is predictive of another variable <math><mi>y</mi></math>, having observed covariates <math><mrow><mi>z</mi></mrow></math>. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: <math><mrow><msub><mi>F</mi><mrow><mi>x</mi><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> and <math><mrow><msub><mi>F</mi><mrow><mi>y</mi><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> where <math><mrow><msub><mi>F</mi><mrow><mo>⋅</mo><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> is a conditional cumulative distribution function (CDF) for the distribution <math><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math>. These variables are termed \"information residuals.\" We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"206 ","pages":"10343-10367"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484293/pdf/nihms-1899844.pdf","citationCount":"0","resultStr":"{\"title\":\"DIET: Conditional independence testing with marginal dependence measures of residual information.\",\"authors\":\"Mukund Sudarshan, Aahlad Puli, Wesley Tansey, Rajesh Ranganath\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conditional randomization tests (CRTs) assess whether a variable <math><mi>x</mi></math> is predictive of another variable <math><mi>y</mi></math>, having observed covariates <math><mrow><mi>z</mi></mrow></math>. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: <math><mrow><msub><mi>F</mi><mrow><mi>x</mi><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> and <math><mrow><msub><mi>F</mi><mrow><mi>y</mi><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> where <math><mrow><msub><mi>F</mi><mrow><mo>⋅</mo><mo>∣</mo><mi>z</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math> is a conditional cumulative distribution function (CDF) for the distribution <math><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>∣</mo><mi>z</mi><mo>)</mo></mrow></math>. These variables are termed \\\"information residuals.\\\" We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"206 \",\"pages\":\"10343-10367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484293/pdf/nihms-1899844.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

条件随机化检验(CRTs)评估的是一个变量 x 是否能预测另一个变量 y 以及观察到的协变量 z。CRT 需要拟合大量的预测模型,这在计算上往往难以实现。现有的降低 CRT 成本的解决方案通常是将数据集分成训练和测试两部分,或依赖启发式方法进行交互,这两种方法都会导致预测能力下降。我们提出的解耦独立性测试(DIET)算法利用边际独立性统计来测试条件独立性关系,从而避免了上述两个问题。DIET 测试两个随机变量的边际独立性:Fx∣z(x∣z)和 Fy∣z(y∣z),其中 F∣z(⋅∣z)是分布 p(⋅∣z)的条件累积分布函数(CDF)。这些变量被称为 "信息残差"。我们给出了 DIET 实现有限样本类型-1 错误控制和功率大于类型-1 错误率的充分条件。然后,我们证明了当使用信息残差之间的互信息作为检验统计量时,DIET 会产生最强大的条件有效检验。最后,我们展示了 DIET 在几个合成和真实基准上比其他可行的 CRT 获得了更高的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIET: Conditional independence testing with marginal dependence measures of residual information.

Conditional randomization tests (CRTs) assess whether a variable x is predictive of another variable y, having observed covariates z. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: Fxz(xz) and Fyz(yz) where Fz(z) is a conditional cumulative distribution function (CDF) for the distribution p(z). These variables are termed "information residuals." We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信