Emilio Wagner, Pablo Wagner, Mario I Escudero, Florencia Pacheco, David Salinas, Alexandre Leme Godoy-Santos, Felipe Palma, Rodrigo Guzmán-Venegas, Francisco Jose Berral-De la Rosa
{"title":"踝关节骨折急性三角肌损伤:不同修复结构的生物力学分析。","authors":"Emilio Wagner, Pablo Wagner, Mario I Escudero, Florencia Pacheco, David Salinas, Alexandre Leme Godoy-Santos, Felipe Palma, Rodrigo Guzmán-Venegas, Francisco Jose Berral-De la Rosa","doi":"10.1177/10711007231184844","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The importance of the deltoid ligament in the congruency and coupling of the tibiotalar joint is well known. The current trend is to repair it in cases of acute injuries in the context of ankle fractures; however, there is limited information on how it should be reconstructed. The objective of this study was to compare different deltoid ligament repair types in an ankle fracture cadaveric model.</p><p><strong>Methods: </strong>Sixteen cadaveric foot-ankle-distal tibia specimens were used. All samples were prepared as a supination external rotation ankle fracture model. Axial load and cyclic axial rotations were applied on every specimen using a specifically designed frame. This test was performed without deltoid injury, with deltoid injury, and after repair. The reconstruction was performed in 4 different ways (anterior, posterior, middle, and combined). Medial clear space (MCS) was measured for each condition on simulated weightbearing (WB) and gravity stress (GS) radiographs. Reflective markers were used in tibia and talus, registering the kinematics through a motion analysis system to record the tibiotalar uncoupling.</p><p><strong>Results: </strong>After deltoid damage, in all cases the MCS increased significantly on GS radiographs, but there was no increase in the MCS on WB radiographs. After repair, in all cases, the MCS was normalized. Kinematically, after deltoid damage, the tibiotalar uncoupling increased significantly. All isolated repairs achieved a similar tibiotalar uncoupling value as its baseline condition. The combined repair resulted in a significant decrease in tibiotalar uncoupling.</p><p><strong>Conclusion: </strong>Our results show that deltoid repair recovers the tibiotalar coupling mechanism in an ankle fracture model. Isolated deltoid repairs recovered baseline MCS and tibiotalar uncoupling values. Combined repairs may lead to overconstraint, which could lead to postoperative stiffness. Clinical studies are needed to prove these results and show clinically improved outcomes.</p><p><strong>Clinical relevance: </strong>This study helps in finding the optimum deltoid repair to use in an acute trauma setting.</p>","PeriodicalId":12446,"journal":{"name":"Foot & Ankle International","volume":"44 9","pages":"905-912"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute Deltoid Injury in Ankle Fractures: A Biomechanical Analysis of Different Repair Constructs.\",\"authors\":\"Emilio Wagner, Pablo Wagner, Mario I Escudero, Florencia Pacheco, David Salinas, Alexandre Leme Godoy-Santos, Felipe Palma, Rodrigo Guzmán-Venegas, Francisco Jose Berral-De la Rosa\",\"doi\":\"10.1177/10711007231184844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The importance of the deltoid ligament in the congruency and coupling of the tibiotalar joint is well known. The current trend is to repair it in cases of acute injuries in the context of ankle fractures; however, there is limited information on how it should be reconstructed. The objective of this study was to compare different deltoid ligament repair types in an ankle fracture cadaveric model.</p><p><strong>Methods: </strong>Sixteen cadaveric foot-ankle-distal tibia specimens were used. All samples were prepared as a supination external rotation ankle fracture model. Axial load and cyclic axial rotations were applied on every specimen using a specifically designed frame. This test was performed without deltoid injury, with deltoid injury, and after repair. The reconstruction was performed in 4 different ways (anterior, posterior, middle, and combined). Medial clear space (MCS) was measured for each condition on simulated weightbearing (WB) and gravity stress (GS) radiographs. Reflective markers were used in tibia and talus, registering the kinematics through a motion analysis system to record the tibiotalar uncoupling.</p><p><strong>Results: </strong>After deltoid damage, in all cases the MCS increased significantly on GS radiographs, but there was no increase in the MCS on WB radiographs. After repair, in all cases, the MCS was normalized. Kinematically, after deltoid damage, the tibiotalar uncoupling increased significantly. All isolated repairs achieved a similar tibiotalar uncoupling value as its baseline condition. The combined repair resulted in a significant decrease in tibiotalar uncoupling.</p><p><strong>Conclusion: </strong>Our results show that deltoid repair recovers the tibiotalar coupling mechanism in an ankle fracture model. Isolated deltoid repairs recovered baseline MCS and tibiotalar uncoupling values. Combined repairs may lead to overconstraint, which could lead to postoperative stiffness. Clinical studies are needed to prove these results and show clinically improved outcomes.</p><p><strong>Clinical relevance: </strong>This study helps in finding the optimum deltoid repair to use in an acute trauma setting.</p>\",\"PeriodicalId\":12446,\"journal\":{\"name\":\"Foot & Ankle International\",\"volume\":\"44 9\",\"pages\":\"905-912\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foot & Ankle International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10711007231184844\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot & Ankle International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10711007231184844","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Acute Deltoid Injury in Ankle Fractures: A Biomechanical Analysis of Different Repair Constructs.
Background: The importance of the deltoid ligament in the congruency and coupling of the tibiotalar joint is well known. The current trend is to repair it in cases of acute injuries in the context of ankle fractures; however, there is limited information on how it should be reconstructed. The objective of this study was to compare different deltoid ligament repair types in an ankle fracture cadaveric model.
Methods: Sixteen cadaveric foot-ankle-distal tibia specimens were used. All samples were prepared as a supination external rotation ankle fracture model. Axial load and cyclic axial rotations were applied on every specimen using a specifically designed frame. This test was performed without deltoid injury, with deltoid injury, and after repair. The reconstruction was performed in 4 different ways (anterior, posterior, middle, and combined). Medial clear space (MCS) was measured for each condition on simulated weightbearing (WB) and gravity stress (GS) radiographs. Reflective markers were used in tibia and talus, registering the kinematics through a motion analysis system to record the tibiotalar uncoupling.
Results: After deltoid damage, in all cases the MCS increased significantly on GS radiographs, but there was no increase in the MCS on WB radiographs. After repair, in all cases, the MCS was normalized. Kinematically, after deltoid damage, the tibiotalar uncoupling increased significantly. All isolated repairs achieved a similar tibiotalar uncoupling value as its baseline condition. The combined repair resulted in a significant decrease in tibiotalar uncoupling.
Conclusion: Our results show that deltoid repair recovers the tibiotalar coupling mechanism in an ankle fracture model. Isolated deltoid repairs recovered baseline MCS and tibiotalar uncoupling values. Combined repairs may lead to overconstraint, which could lead to postoperative stiffness. Clinical studies are needed to prove these results and show clinically improved outcomes.
Clinical relevance: This study helps in finding the optimum deltoid repair to use in an acute trauma setting.
期刊介绍:
Foot & Ankle International (FAI), in publication since 1980, is the official journal of the American Orthopaedic Foot & Ankle Society (AOFAS). This monthly medical journal emphasizes surgical and medical management as it relates to the foot and ankle with a specific focus on reconstructive, trauma, and sports-related conditions utilizing the latest technological advances. FAI offers original, clinically oriented, peer-reviewed research articles presenting new approaches to foot and ankle pathology and treatment, current case reviews, and technique tips addressing the management of complex problems. This journal is an ideal resource for highly-trained orthopaedic foot and ankle specialists and allied health care providers.
The journal’s Founding Editor, Melvin H. Jahss, MD (deceased), served from 1980-1988. He was followed by Kenneth A. Johnson, MD (deceased) from 1988-1993; Lowell D. Lutter, MD (deceased) from 1993-2004; and E. Greer Richardson, MD from 2005-2007. David B. Thordarson, MD, assumed the role of Editor-in-Chief in 2008.
The journal focuses on the following areas of interest:
• Surgery
• Wound care
• Bone healing
• Pain management
• In-office orthotic systems
• Diabetes
• Sports medicine