Shumei Ma , Kuan Yang , Zhihong Li , Liang Li , Yue Feng , Xiaowei Wang , Jiahui Wang , Zhengdan Zhu , Zhiyong Wang , Juan Wang , Yizhun Zhu , Li Liu
{"title":"一种逆转录修饰肽通过影响免疫细胞的甘油磷脂和嘌呤代谢来减轻卵清蛋白诱导的哮喘模型","authors":"Shumei Ma , Kuan Yang , Zhihong Li , Liang Li , Yue Feng , Xiaowei Wang , Jiahui Wang , Zhengdan Zhu , Zhiyong Wang , Juan Wang , Yizhun Zhu , Li Liu","doi":"10.1016/j.pupt.2022.102185","DOIUrl":null,"url":null,"abstract":"<div><p>Allergic asthma is a heterogeneous disease involving a variety of inflammatory cells. Immune imbalance or changes in the immune microenvironment are the essential causes that promote inflammation in allergic asthma. Tetraspanin CD81 can be used as a platform for receptor clustering and signal transmission owing to its special transmembrane structure and is known to participate in the physiological processes of cell proliferation, differentiation, adhesion, and migration. Previous studies have shown that CD81-targeting peptidomimetics exhibit anti-allergic lung inflammation. However, due to the low metabolic stability of peptide drugs, their druggability is limited. Here, we aimed to generate a metabolically stable anti-CD81 peptide, evaluate its anti-inflammatory action and establish its mechanism of action. Based on previous reports, we applied retro-inverse peptide modification to obtain a new compound, PD00 (NH2-D-Gly-D-Ser-D-Thr-D-Tyr-D-Thr-D-Gln-D-Gly-COOH), with high metabolic stability. Enhanced ultraperformance liquid chromatography–tandem mass spectrometry was used to investigate the in vitro and in vivo metabolic stabilities of PD00. The affinities of PD00 and CD81 were studied using molecular docking and surface plasmon resonance techniques. An ovalbumin (OVA)-induced asthma model was used to evaluate the effects of PD00 in vivo. Mice were treated with different concentrations of PD00 (175 and 350 μg/kg) for 10 days. Airway hyperresponsiveness (AHR) to acetyl-β-methacholine (Mch), inflammatory cell counts in the bronchoalveolar lavage fluid, and serum OVA-specific IgE levels were detected in the mice at the end of the experiment. Lung tissues were collected for haematoxylin and eosin staining, untargeted metabolomic analysis, and single-cell transcriptome sequencing. PD00 has a high affinity for CD81; therefore, administration of PD00 markedly ameliorated AHR and airway inflammation in mice after OVA sensitisation and exposure. Serum OVA-specific IgE levels decreased considerably. In addition, PD00 treatment increased glycerophospholipid and purine metabolism in immune cells. Collectively, PD00 may regulate the glycerophospholipid and purine metabolism pathways to ameliorate the pathophysiological features of asthma. These findings suggest that PD00 is a potential compound for the treatment of asthma.</p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A retro-inverso modified peptide alleviated ovalbumin-induced asthma model by affecting glycerophospholipid and purine metabolism of immune cells\",\"authors\":\"Shumei Ma , Kuan Yang , Zhihong Li , Liang Li , Yue Feng , Xiaowei Wang , Jiahui Wang , Zhengdan Zhu , Zhiyong Wang , Juan Wang , Yizhun Zhu , Li Liu\",\"doi\":\"10.1016/j.pupt.2022.102185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Allergic asthma is a heterogeneous disease involving a variety of inflammatory cells. Immune imbalance or changes in the immune microenvironment are the essential causes that promote inflammation in allergic asthma. Tetraspanin CD81 can be used as a platform for receptor clustering and signal transmission owing to its special transmembrane structure and is known to participate in the physiological processes of cell proliferation, differentiation, adhesion, and migration. Previous studies have shown that CD81-targeting peptidomimetics exhibit anti-allergic lung inflammation. However, due to the low metabolic stability of peptide drugs, their druggability is limited. Here, we aimed to generate a metabolically stable anti-CD81 peptide, evaluate its anti-inflammatory action and establish its mechanism of action. Based on previous reports, we applied retro-inverse peptide modification to obtain a new compound, PD00 (NH2-D-Gly-D-Ser-D-Thr-D-Tyr-D-Thr-D-Gln-D-Gly-COOH), with high metabolic stability. Enhanced ultraperformance liquid chromatography–tandem mass spectrometry was used to investigate the in vitro and in vivo metabolic stabilities of PD00. The affinities of PD00 and CD81 were studied using molecular docking and surface plasmon resonance techniques. An ovalbumin (OVA)-induced asthma model was used to evaluate the effects of PD00 in vivo. Mice were treated with different concentrations of PD00 (175 and 350 μg/kg) for 10 days. Airway hyperresponsiveness (AHR) to acetyl-β-methacholine (Mch), inflammatory cell counts in the bronchoalveolar lavage fluid, and serum OVA-specific IgE levels were detected in the mice at the end of the experiment. Lung tissues were collected for haematoxylin and eosin staining, untargeted metabolomic analysis, and single-cell transcriptome sequencing. PD00 has a high affinity for CD81; therefore, administration of PD00 markedly ameliorated AHR and airway inflammation in mice after OVA sensitisation and exposure. Serum OVA-specific IgE levels decreased considerably. In addition, PD00 treatment increased glycerophospholipid and purine metabolism in immune cells. Collectively, PD00 may regulate the glycerophospholipid and purine metabolism pathways to ameliorate the pathophysiological features of asthma. These findings suggest that PD00 is a potential compound for the treatment of asthma.</p></div>\",\"PeriodicalId\":20799,\"journal\":{\"name\":\"Pulmonary pharmacology & therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary pharmacology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094553922000761\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553922000761","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A retro-inverso modified peptide alleviated ovalbumin-induced asthma model by affecting glycerophospholipid and purine metabolism of immune cells
Allergic asthma is a heterogeneous disease involving a variety of inflammatory cells. Immune imbalance or changes in the immune microenvironment are the essential causes that promote inflammation in allergic asthma. Tetraspanin CD81 can be used as a platform for receptor clustering and signal transmission owing to its special transmembrane structure and is known to participate in the physiological processes of cell proliferation, differentiation, adhesion, and migration. Previous studies have shown that CD81-targeting peptidomimetics exhibit anti-allergic lung inflammation. However, due to the low metabolic stability of peptide drugs, their druggability is limited. Here, we aimed to generate a metabolically stable anti-CD81 peptide, evaluate its anti-inflammatory action and establish its mechanism of action. Based on previous reports, we applied retro-inverse peptide modification to obtain a new compound, PD00 (NH2-D-Gly-D-Ser-D-Thr-D-Tyr-D-Thr-D-Gln-D-Gly-COOH), with high metabolic stability. Enhanced ultraperformance liquid chromatography–tandem mass spectrometry was used to investigate the in vitro and in vivo metabolic stabilities of PD00. The affinities of PD00 and CD81 were studied using molecular docking and surface plasmon resonance techniques. An ovalbumin (OVA)-induced asthma model was used to evaluate the effects of PD00 in vivo. Mice were treated with different concentrations of PD00 (175 and 350 μg/kg) for 10 days. Airway hyperresponsiveness (AHR) to acetyl-β-methacholine (Mch), inflammatory cell counts in the bronchoalveolar lavage fluid, and serum OVA-specific IgE levels were detected in the mice at the end of the experiment. Lung tissues were collected for haematoxylin and eosin staining, untargeted metabolomic analysis, and single-cell transcriptome sequencing. PD00 has a high affinity for CD81; therefore, administration of PD00 markedly ameliorated AHR and airway inflammation in mice after OVA sensitisation and exposure. Serum OVA-specific IgE levels decreased considerably. In addition, PD00 treatment increased glycerophospholipid and purine metabolism in immune cells. Collectively, PD00 may regulate the glycerophospholipid and purine metabolism pathways to ameliorate the pathophysiological features of asthma. These findings suggest that PD00 is a potential compound for the treatment of asthma.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.