阿尔茨海默病的小脑连接组代谢过高

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Brain connectivity Pub Date : 2023-08-01 Epub Date: 2021-08-23 DOI:10.1089/brain.2020.0937
Vinay Gupta, Samuel Booth, Ji Hyun Ko
{"title":"阿尔茨海默病的小脑连接组代谢过高","authors":"Vinay Gupta, Samuel Booth, Ji Hyun Ko","doi":"10.1089/brain.2020.0937","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Regional hypermetabolism in Alzheimer's disease (AD), especially in the cerebellum, has been consistently observed but often neglected as an artefact produced by the commonly used proportional scaling procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also important in disease pathology in AD. <b><i>Methods:</i></b> Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer's Disease Neuroimaging Initiative database, we developed a general linear model-based classifier that differentiated AD patients from normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region-region group-wise correlation matrices and evaluated differences in network organization by using the graph theory analysis between AD and control subjects. <b><i>Results:</i></b> We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake over 2 years in prodromal AD patients (<i>n</i> = 39). <b><i>Discussion:</i></b> This study suggests that hypermetabolism found in AD may play an important role in forming the AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for further investigation in altered network organization in AD.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypermetabolic Cerebellar Connectome in Alzheimer's Disease.\",\"authors\":\"Vinay Gupta, Samuel Booth, Ji Hyun Ko\",\"doi\":\"10.1089/brain.2020.0937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Regional hypermetabolism in Alzheimer's disease (AD), especially in the cerebellum, has been consistently observed but often neglected as an artefact produced by the commonly used proportional scaling procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also important in disease pathology in AD. <b><i>Methods:</i></b> Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer's Disease Neuroimaging Initiative database, we developed a general linear model-based classifier that differentiated AD patients from normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region-region group-wise correlation matrices and evaluated differences in network organization by using the graph theory analysis between AD and control subjects. <b><i>Results:</i></b> We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake over 2 years in prodromal AD patients (<i>n</i> = 39). <b><i>Discussion:</i></b> This study suggests that hypermetabolism found in AD may play an important role in forming the AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for further investigation in altered network organization in AD.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2020.0937\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2020.0937","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

导言:在阿尔茨海默病(AD)中,特别是在小脑中,区域代谢亢进一直被观察到,但往往被忽视,认为是统计参数绘图中常用的比例缩放程序所产生的假象。我们假设高代谢区域在 AD 的疾病病理中也很重要。研究方法利用公开的阿尔茨海默病神经影像学倡议数据库中 88 名 AD 受试者和 88 名年龄性别匹配的正常对照者(NL)的氟脱氧葡萄糖(FDG)-正电子发射断层扫描(PET)图像,我们开发了一种基于一般线性模型的分类器,它能将 AD 患者与正常人区分开来(灵敏度 = 87.50%,特异度 = 82.95%)。我们构建了区域-区域组相关矩阵,并通过图论分析评估了AD患者和对照组之间网络组织的差异。结果我们以白质为参照区域进行了复制,从而证实了在 AD 中发现的高代谢并非伪现象。我们利用图论进一步研究了高代谢区域的作用。AD和NL网络之间的中心度(BC)差异与基于FDG PET的AD分类器的区域权重相关。其中,小脑的高代谢伴随着较高的 BC。在AD网络中,BC值较高的脑区在AD前驱期患者(39人)的2年中显示出FDG摄取量的逐渐增加。讨论这项研究表明,AD 中的高代谢可能在形成与 AD 相关的代谢网络中发挥重要作用。特别是,高代谢小脑区域是进一步研究AD网络组织改变的最佳候选区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypermetabolic Cerebellar Connectome in Alzheimer's Disease.

Introduction: Regional hypermetabolism in Alzheimer's disease (AD), especially in the cerebellum, has been consistently observed but often neglected as an artefact produced by the commonly used proportional scaling procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also important in disease pathology in AD. Methods: Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer's Disease Neuroimaging Initiative database, we developed a general linear model-based classifier that differentiated AD patients from normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region-region group-wise correlation matrices and evaluated differences in network organization by using the graph theory analysis between AD and control subjects. Results: We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake over 2 years in prodromal AD patients (n = 39). Discussion: This study suggests that hypermetabolism found in AD may play an important role in forming the AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for further investigation in altered network organization in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信