Billy Tchounke, Leopoldo Sanchez, Joseph Martin Bell, David Cros
{"title":"配偶选择:在基因组和传统油棕(Elaeis guineensis Jacq.)杂交育种中,最大限度地提高遗传增益和控制近亲繁殖的一种有用方法。","authors":"Billy Tchounke, Leopoldo Sanchez, Joseph Martin Bell, David Cros","doi":"10.1371/journal.pcbi.1010290","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings. However, in species with long breeding cycles, this cannot be studied empirically. Here, we investigated this aspect with forward genetic simulations on a high-performance computing cluster and massively parallel computing, considering the oil palm hybrid breeding example. We compared MS and simple methods of inbreeding management (limitation of the number of individuals selected per family, prohibition of self-fertilization and combination of these two methods), in terms of parental inbreeding and genetic progress over four generations of genomic selection and phenotypic selection. The results showed that, compared to the conventional method without optimization, MS could lead to significant decreases in inbreeding and increases in annual genetic progress, with the magnitude of the effect depending on MS parameters and breeding scenarios. The optimal solution retained by MS differed by five breeding characteristics from the conventional solution: selected individuals covering a broader range of genetic values, fewer individuals selected per full-sib family, decreased percentage of selfings, selfings preferentially made on the best individuals and unbalanced number of crosses among selected individuals, with the better an individual, the higher the number of times he is mated. Stronger slowing-down in inbreeding could be achieved with other methods but they were associated with a decreased genetic progress. We recommend that breeders use MS, with preliminary analyses to identify the proper parameters to reach the goals of the breeding program in terms of inbreeding and genetic gain.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1010290"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513302/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding.\",\"authors\":\"Billy Tchounke, Leopoldo Sanchez, Joseph Martin Bell, David Cros\",\"doi\":\"10.1371/journal.pcbi.1010290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings. However, in species with long breeding cycles, this cannot be studied empirically. Here, we investigated this aspect with forward genetic simulations on a high-performance computing cluster and massively parallel computing, considering the oil palm hybrid breeding example. We compared MS and simple methods of inbreeding management (limitation of the number of individuals selected per family, prohibition of self-fertilization and combination of these two methods), in terms of parental inbreeding and genetic progress over four generations of genomic selection and phenotypic selection. The results showed that, compared to the conventional method without optimization, MS could lead to significant decreases in inbreeding and increases in annual genetic progress, with the magnitude of the effect depending on MS parameters and breeding scenarios. The optimal solution retained by MS differed by five breeding characteristics from the conventional solution: selected individuals covering a broader range of genetic values, fewer individuals selected per full-sib family, decreased percentage of selfings, selfings preferentially made on the best individuals and unbalanced number of crosses among selected individuals, with the better an individual, the higher the number of times he is mated. Stronger slowing-down in inbreeding could be achieved with other methods but they were associated with a decreased genetic progress. We recommend that breeders use MS, with preliminary analyses to identify the proper parameters to reach the goals of the breeding program in terms of inbreeding and genetic gain.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"19 9\",\"pages\":\"e1010290\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1010290\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1010290","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding.
Genomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings. However, in species with long breeding cycles, this cannot be studied empirically. Here, we investigated this aspect with forward genetic simulations on a high-performance computing cluster and massively parallel computing, considering the oil palm hybrid breeding example. We compared MS and simple methods of inbreeding management (limitation of the number of individuals selected per family, prohibition of self-fertilization and combination of these two methods), in terms of parental inbreeding and genetic progress over four generations of genomic selection and phenotypic selection. The results showed that, compared to the conventional method without optimization, MS could lead to significant decreases in inbreeding and increases in annual genetic progress, with the magnitude of the effect depending on MS parameters and breeding scenarios. The optimal solution retained by MS differed by five breeding characteristics from the conventional solution: selected individuals covering a broader range of genetic values, fewer individuals selected per full-sib family, decreased percentage of selfings, selfings preferentially made on the best individuals and unbalanced number of crosses among selected individuals, with the better an individual, the higher the number of times he is mated. Stronger slowing-down in inbreeding could be achieved with other methods but they were associated with a decreased genetic progress. We recommend that breeders use MS, with preliminary analyses to identify the proper parameters to reach the goals of the breeding program in terms of inbreeding and genetic gain.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.