Jong-Uk Lee, Min Kyung Kim, Seung-Lee Park, Da Jeong Bae, Hun Soo Chang, Choon-Sik Park, Jong Sook Park
{"title":"ATP8B3基因多态性与哮喘患者阿司匹林加重呼吸系统疾病的关系","authors":"Jong-Uk Lee, Min Kyung Kim, Seung-Lee Park, Da Jeong Bae, Hun Soo Chang, Choon-Sik Park, Jong Sook Park","doi":"10.1097/FPC.0000000000000480","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aspirin-exacerbated respiratory disease (AERD), an asthma phenotype, often presents with severe manifestations and it remains widely underdiagnosed because of insufficient awareness of the relationship between the ingestion of nonsteroidal anti-inflammatory drugs, including acetylsalicylic acid (ASA), and asthma exacerbation. Our previous genome-wide association study demonstrated an association between a single nucleotide polymorphism (SNP) of the ATP8B3 gene and the risk of AERD. This study examined AERD-related SNPs of the ATP8B3 gene in a large population.</p><p><strong>Methods: </strong>Twenty-five SNPs of ATP8B3 were genotyped with the GoldenGate assay using VeraCode microbeads in 141 asthmatics with AERD and 995 Aspirin-tolerant asthma (ATA). The genotype distribution was analyzed using logistic regression models. The declines in forced expiratory volume in 1 second (FEV1)following an ASA challenge were compared among the genotypes and haplotypes using a type III generalized linear model.</p><p><strong>Results: </strong>The minor allele frequencies (MAFs) of rs10421558 A>G in the 5'UTR and rs10403288 G>A in the intron were significantly lower in the AERD than the ATA [34.0% vs. 43.8%, OR = 0.66 (0.62-0.92), Pcorr = 0.03 and 28.4% vs. 35.4%, OR = 0.62 (0.59-0.89), Pcorr = 0.016, respectively]. BL1ht5 was significantly higher in the AERD [7.6% vs. 1.6%, OR = 12.23 (0.2-0.51), P = 4.7 × 10 -4 , Pcorr = 0.001]. Among them, rs10421558 A>G and BL1ht5 were associated with the percent decline in FEV1 on the oral ASA challenge test.</p><p><strong>Conclusion: </strong>The minor allele of rs10421558 A>G in the 5'UTR may protect against the development of AERD via the increased production of ATP8B3.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 8","pages":"281-287"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of ATP8B3 gene polymorphisms with aspirin-exacerbated respiratory disease in asthmatics.\",\"authors\":\"Jong-Uk Lee, Min Kyung Kim, Seung-Lee Park, Da Jeong Bae, Hun Soo Chang, Choon-Sik Park, Jong Sook Park\",\"doi\":\"10.1097/FPC.0000000000000480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aspirin-exacerbated respiratory disease (AERD), an asthma phenotype, often presents with severe manifestations and it remains widely underdiagnosed because of insufficient awareness of the relationship between the ingestion of nonsteroidal anti-inflammatory drugs, including acetylsalicylic acid (ASA), and asthma exacerbation. Our previous genome-wide association study demonstrated an association between a single nucleotide polymorphism (SNP) of the ATP8B3 gene and the risk of AERD. This study examined AERD-related SNPs of the ATP8B3 gene in a large population.</p><p><strong>Methods: </strong>Twenty-five SNPs of ATP8B3 were genotyped with the GoldenGate assay using VeraCode microbeads in 141 asthmatics with AERD and 995 Aspirin-tolerant asthma (ATA). The genotype distribution was analyzed using logistic regression models. The declines in forced expiratory volume in 1 second (FEV1)following an ASA challenge were compared among the genotypes and haplotypes using a type III generalized linear model.</p><p><strong>Results: </strong>The minor allele frequencies (MAFs) of rs10421558 A>G in the 5'UTR and rs10403288 G>A in the intron were significantly lower in the AERD than the ATA [34.0% vs. 43.8%, OR = 0.66 (0.62-0.92), Pcorr = 0.03 and 28.4% vs. 35.4%, OR = 0.62 (0.59-0.89), Pcorr = 0.016, respectively]. BL1ht5 was significantly higher in the AERD [7.6% vs. 1.6%, OR = 12.23 (0.2-0.51), P = 4.7 × 10 -4 , Pcorr = 0.001]. Among them, rs10421558 A>G and BL1ht5 were associated with the percent decline in FEV1 on the oral ASA challenge test.</p><p><strong>Conclusion: </strong>The minor allele of rs10421558 A>G in the 5'UTR may protect against the development of AERD via the increased production of ATP8B3.</p>\",\"PeriodicalId\":19763,\"journal\":{\"name\":\"Pharmacogenetics and genomics\",\"volume\":\"32 8\",\"pages\":\"281-287\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics and genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000480\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000480","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Association of ATP8B3 gene polymorphisms with aspirin-exacerbated respiratory disease in asthmatics.
Background: Aspirin-exacerbated respiratory disease (AERD), an asthma phenotype, often presents with severe manifestations and it remains widely underdiagnosed because of insufficient awareness of the relationship between the ingestion of nonsteroidal anti-inflammatory drugs, including acetylsalicylic acid (ASA), and asthma exacerbation. Our previous genome-wide association study demonstrated an association between a single nucleotide polymorphism (SNP) of the ATP8B3 gene and the risk of AERD. This study examined AERD-related SNPs of the ATP8B3 gene in a large population.
Methods: Twenty-five SNPs of ATP8B3 were genotyped with the GoldenGate assay using VeraCode microbeads in 141 asthmatics with AERD and 995 Aspirin-tolerant asthma (ATA). The genotype distribution was analyzed using logistic regression models. The declines in forced expiratory volume in 1 second (FEV1)following an ASA challenge were compared among the genotypes and haplotypes using a type III generalized linear model.
Results: The minor allele frequencies (MAFs) of rs10421558 A>G in the 5'UTR and rs10403288 G>A in the intron were significantly lower in the AERD than the ATA [34.0% vs. 43.8%, OR = 0.66 (0.62-0.92), Pcorr = 0.03 and 28.4% vs. 35.4%, OR = 0.62 (0.59-0.89), Pcorr = 0.016, respectively]. BL1ht5 was significantly higher in the AERD [7.6% vs. 1.6%, OR = 12.23 (0.2-0.51), P = 4.7 × 10 -4 , Pcorr = 0.001]. Among them, rs10421558 A>G and BL1ht5 were associated with the percent decline in FEV1 on the oral ASA challenge test.
Conclusion: The minor allele of rs10421558 A>G in the 5'UTR may protect against the development of AERD via the increased production of ATP8B3.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.