{"title":"重构细胞表型转换的数据驱动管理方程:数据科学与系统生物学的整合。","authors":"Jianhua Xing","doi":"10.1088/1478-3975/ac8c16","DOIUrl":null,"url":null,"abstract":"<p><p>Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585661/pdf/nihms-1835862.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology.\",\"authors\":\"Jianhua Xing\",\"doi\":\"10.1088/1478-3975/ac8c16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585661/pdf/nihms-1835862.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ac8c16\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac8c16","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology.
Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.