两个臭名昭著的节点:对两栖动物和胎生哺乳动物的松弛分子钟年龄估计的批判性审视》(Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of Bilaterian Animals and Placental Mammals)。
{"title":"两个臭名昭著的节点:对两栖动物和胎生哺乳动物的松弛分子钟年龄估计的批判性审视》(Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of Bilaterian Animals and Placental Mammals)。","authors":"Graham E Budd, Richard P Mann","doi":"10.1093/sysbio/syad057","DOIUrl":null,"url":null,"abstract":"<p><p>The popularity of relaxed clock Bayesian inference of clade origin timings has generated several recent publications with focal results considerably older than the fossils of the clades in question. Here, we critically examine two such clades: the animals (with a focus on the bilaterians) and the mammals (with a focus on the placentals). Each example displays a set of characteristic pathologies which, although much commented on, are rarely corrected for. We conclude that in neither case does the molecular clock analysis provide any evidence for an origin of the clade deeper than what is suggested by the fossil record. In addition, both these clades have other features (including, in the case of the placental mammals, proximity to a large mass extinction) that allow us to generate precise expectations of the timings of their origins. Thus, in these instances, the fossil record can provide a powerful test of molecular clock methodology, and why it goes astray, and we have every reason to think these problems are general. [Cambrian explosion; mammalian evolution; molecular clocks.].</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"223-234"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of the Bilaterian Animals and Placental Mammals.\",\"authors\":\"Graham E Budd, Richard P Mann\",\"doi\":\"10.1093/sysbio/syad057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The popularity of relaxed clock Bayesian inference of clade origin timings has generated several recent publications with focal results considerably older than the fossils of the clades in question. Here, we critically examine two such clades: the animals (with a focus on the bilaterians) and the mammals (with a focus on the placentals). Each example displays a set of characteristic pathologies which, although much commented on, are rarely corrected for. We conclude that in neither case does the molecular clock analysis provide any evidence for an origin of the clade deeper than what is suggested by the fossil record. In addition, both these clades have other features (including, in the case of the placental mammals, proximity to a large mass extinction) that allow us to generate precise expectations of the timings of their origins. Thus, in these instances, the fossil record can provide a powerful test of molecular clock methodology, and why it goes astray, and we have every reason to think these problems are general. [Cambrian explosion; mammalian evolution; molecular clocks.].</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"223-234\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syad057\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syad057","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of the Bilaterian Animals and Placental Mammals.
The popularity of relaxed clock Bayesian inference of clade origin timings has generated several recent publications with focal results considerably older than the fossils of the clades in question. Here, we critically examine two such clades: the animals (with a focus on the bilaterians) and the mammals (with a focus on the placentals). Each example displays a set of characteristic pathologies which, although much commented on, are rarely corrected for. We conclude that in neither case does the molecular clock analysis provide any evidence for an origin of the clade deeper than what is suggested by the fossil record. In addition, both these clades have other features (including, in the case of the placental mammals, proximity to a large mass extinction) that allow us to generate precise expectations of the timings of their origins. Thus, in these instances, the fossil record can provide a powerful test of molecular clock methodology, and why it goes astray, and we have every reason to think these problems are general. [Cambrian explosion; mammalian evolution; molecular clocks.].
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.